BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 3127271)

  • 1. Possible CO2 concentrating mechanism in chloroplasts of C3 plants. Role of carbonic anhydrase.
    Fridlyand LE; Kaler VL
    Gen Physiol Biophys; 1987 Dec; 6(6):617-36. PubMed ID: 3127271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.
    Igamberdiev AU; Roussel MR
    Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants.
    Rudenko NN; Ivanov BN
    Biochemistry (Mosc); 2021 Oct; 86(10):1243-1255. PubMed ID: 34903154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism.
    Fridlyand L; Kaplan A; Reinhold L
    Biosystems; 1996; 37(3):229-38. PubMed ID: 8924647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii.
    Park YI; Karlsson J; Rojdestvenski I; Pronina N; Klimov V; Oquist G; Samuelsson G
    FEBS Lett; 1999 Feb; 444(1):102-5. PubMed ID: 10037156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2.
    Gillon J; Yakir D
    Science; 2001 Mar; 291(5513):2584-7. PubMed ID: 11283366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta.
    Förster B; Rourke LM; Weerasooriya HN; Pabuayon ICM; Rolland V; Au EK; Bala S; Bajsa-Hirschel J; Kaines S; Kasili RW; LaPlace LM; Machingura MC; Massey B; Rosati VC; Stuart-Williams H; Badger MR; Price GD; Moroney JV
    J Exp Bot; 2023 Jun; 74(12):3651-3666. PubMed ID: 36987927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence.
    Bahn YS; Cox GM; Perfect JR; Heitman J
    Curr Biol; 2005 Nov; 15(22):2013-20. PubMed ID: 16303560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of flatfish sperm motility by CO2 and carbonic anhydrase.
    Inaba K; Dréanno C; Cosson J
    Cell Motil Cytoskeleton; 2003 Jul; 55(3):174-87. PubMed ID: 12789662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic anhydrases in photosynthetic cells of higher plants.
    Rudenko NN; Ignatova LK; Fedorchuk TP; Ivanov BN
    Biochemistry (Mosc); 2015 Jun; 80(6):674-87. PubMed ID: 26531014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of CO2 concentrating mechanisms in microalgae taking into account cell and chloroplast structure.
    Fridlyand LE
    Biosystems; 1997; 44(1):41-57. PubMed ID: 9350356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thylakoid-located carbonic anhydrase regulates CO
    Sun N; Han X; Xu M; Kaplan A; Espie GS; Mi H
    New Phytol; 2019 Apr; 222(1):206-217. PubMed ID: 30383301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiological measure of carbonic anhydrase in Müller cells.
    Newman EA
    Glia; 1994 Aug; 11(4):291-9. PubMed ID: 7960033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical kinetic and diffusional limitations on bicarbonate reabsorption by the proximal tubule.
    Wang KW; Deen WM
    Biophys J; 1980 Aug; 31(2):161-82. PubMed ID: 6789900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of carbonic anhydrase in C4 plants.
    Ludwig M
    Curr Opin Plant Biol; 2016 Jun; 31():16-22. PubMed ID: 27016649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach.
    Tolleter D; Chochois V; Poiré R; Price GD; Badger MR
    J Exp Bot; 2017 Jun; 68(14):3915-3924. PubMed ID: 28637277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel system to measure labelled CO2 and HCO3- fluxes across epithelia: corneal epithelium as model tissue.
    Candia OA
    Exp Eye Res; 1996 Aug; 63(2):137-49. PubMed ID: 8983971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity.
    Desforges PR; Gilmour KM; Perry SF
    J Comp Physiol B; 2001 Aug; 171(6):465-73. PubMed ID: 11585258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2.
    Karlsson J; Clarke AK; Chen ZY; Hugghins SY; Park YI; Husic HD; Moroney JV; Samuelsson G
    EMBO J; 1998 Aug; 17(5):1208-16. PubMed ID: 9482718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-concentrating mechanisms in seagrasses.
    Larkum AWD; Davey PA; Kuo J; Ralph PJ; Raven JA
    J Exp Bot; 2017 Jun; 68(14):3773-3784. PubMed ID: 28911056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.