These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 31272952)
21. The Relationship between the Waveform Parameters from the Ocular Response Analyzer and the Progression of Glaucoma. Aoki S; Murata H; Matsuura M; Fujino Y; Nakakura S; Nakao Y; Kiuchi Y; Asaoka R Ophthalmol Glaucoma; 2018; 1(2):123-131. PubMed ID: 32672562 [TBL] [Abstract][Full Text] [Related]
22. An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis. Wang M; Shen LQ; Pasquale LR; Petrakos P; Formica S; Boland MV; Wellik SR; De Moraes CG; Myers JS; Saeedi O; Wang H; Baniasadi N; Li D; Tichelaar J; Bex PJ; Elze T Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):365-375. PubMed ID: 30682206 [TBL] [Abstract][Full Text] [Related]
23. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study. Garway-Heath DF; Zhu H; Cheng Q; Morgan K; Frost C; Crabb DP; Ho TA; Agiomyrgiannakis Y Health Technol Assess; 2018 Jan; 22(4):1-106. PubMed ID: 29384083 [TBL] [Abstract][Full Text] [Related]
24. Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. Strouthidis NG; Scott A; Viswanathan AC; Crabb DP; Garway-Heath DF Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):251-7. PubMed ID: 17197540 [TBL] [Abstract][Full Text] [Related]
26. Validating the usefulness of sectorwise regression of visual field in the central 10°. Omoto T; Murata H; Fujino Y; Matsuura M; Yamashita T; Miki A; Ikeda Y; Mori K; Tanito M; Asaoka R Br J Ophthalmol; 2022 Apr; 106(4):497-501. PubMed ID: 33441320 [TBL] [Abstract][Full Text] [Related]
27. Risk Factors for Fast Visual Field Progression in Glaucoma. Kim JH; Rabiolo A; Morales E; Yu F; Afifi AA; Nouri-Mahdavi K; Caprioli J Am J Ophthalmol; 2019 Nov; 207():268-278. PubMed ID: 31238025 [TBL] [Abstract][Full Text] [Related]
28. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma. Aoki S; Murata H; Fujino Y; Matsuura M; Miki A; Tanito M; Mizoue S; Mori K; Suzuki K; Yamashita T; Kashiwagi K; Hirasawa K; Shoji N; Asaoka R Br J Ophthalmol; 2017 Dec; 101(12):1658-1665. PubMed ID: 28450381 [TBL] [Abstract][Full Text] [Related]
29. Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma. Kwon JM; Weinreb RN; Zangwill LM; Suh MH Am J Ophthalmol; 2019 Apr; 200():65-75. PubMed ID: 30578786 [TBL] [Abstract][Full Text] [Related]
30. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Caprioli J; Coleman AL Ophthalmology; 2008 Jul; 115(7):1123-1129.e3. PubMed ID: 18082889 [TBL] [Abstract][Full Text] [Related]
31. Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients. Rabiolo A; Morales E; Kim JH; Afifi AA; Yu F; Nouri-Mahdavi K; Caprioli J Ophthalmology; 2020 Jun; 127(6):739-747. PubMed ID: 31952885 [TBL] [Abstract][Full Text] [Related]
32. Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma. Rao HL; Kumar AU; Babu JG; Senthil S; Garudadri CS Ophthalmology; 2011 Feb; 118(2):249-53. PubMed ID: 20728941 [TBL] [Abstract][Full Text] [Related]
33. Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Park SC; Kung Y; Su D; Simonson JL; Furlanetto RL; Liebmann JM; Ritch R Ophthalmology; 2013 Aug; 120(8):1546-50. PubMed ID: 23697959 [TBL] [Abstract][Full Text] [Related]
34. Optic disc progression and rates of visual field change in treated glaucoma. De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R Acta Ophthalmol; 2013 Mar; 91(2):e86-91. PubMed ID: 23356423 [TBL] [Abstract][Full Text] [Related]
35. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V. Wall M; Zamba GKD; Artes PH Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):439-445. PubMed ID: 29356822 [TBL] [Abstract][Full Text] [Related]
36. A Genetic Variant in TGFBR3-CDC7 Is Associated with Visual Field Progression in Primary Open-Angle Glaucoma Patients from Singapore. Trikha S; Saffari E; Nongpiur M; Baskaran M; Ho H; Li Z; Tan PY; Allen J; Khor CC; Perera SA; Cheng CY; Aung T; Vithana E Ophthalmology; 2015 Dec; 122(12):2416-22. PubMed ID: 26383992 [TBL] [Abstract][Full Text] [Related]
37. [Risk factors for visual field loss progression in patients with primary open-angle glaucoma in Wenzhou area]. Zhou K; Shang X; Wang XY; Wang XJ; Cheng HH; Hu HS; Huang QJ; Pan XF; Xu X; Liang YB Zhonghua Yan Ke Za Zhi; 2019 Oct; 55(10):777-784. PubMed ID: 31607067 [No Abstract] [Full Text] [Related]
38. Revalidating the Usefulness of a "Sector-Wise Regression" Approach to Predict Glaucomatous Visual Function Progression. Hirasawa K; Murata H; Asaoka R Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4332-5. PubMed ID: 26176870 [TBL] [Abstract][Full Text] [Related]
39. Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis. Nassiri N; Moghimi S; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1208-13. PubMed ID: 23329667 [TBL] [Abstract][Full Text] [Related]
40. Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma. Ballae Ganeshrao S; Senthil S; Choudhari N; Sri Durgam S; Garudadri CS Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):889-900. PubMed ID: 30835290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]