These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31273454)

  • 1. Ocellar structure of African and Australian desert ants.
    Penmetcha B; Ogawa Y; Ribi WA; Narendra A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Oct; 205(5):699-706. PubMed ID: 31273454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocellar structure is driven by the mode of locomotion and activity time in
    Narendra A; Ribi WA
    J Exp Biol; 2017 Dec; 220(Pt 23):4383-4390. PubMed ID: 29187620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.
    Schwarz S; Albert L; Wystrach A; Cheng K
    J Exp Biol; 2011 Mar; 214(Pt 6):901-6. PubMed ID: 21346116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of the visual system in the Australian desert ant Melophorus bagoti.
    Schwarz S; Narendra A; Zeil J
    Arthropod Struct Dev; 2011 Mar; 40(2):128-34. PubMed ID: 21044895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine structure of light- and dark-adapted eyes of desert ants, Cataglyphis bicolor (Formicidae, Hymenoptera).
    Brunnert A; Wehner R
    J Morphol; 1973 May; 140(1):15-29. PubMed ID: 30332862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocellar spatial vision in Myrmecia ants.
    Penmetcha B; Ogawa Y; Ryan LA; Hart NS; Narendra A
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34542631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus.
    Narendra A; Ramirez-Esquivel F; Ribi WA
    Sci Rep; 2016 Mar; 6():22331. PubMed ID: 26975481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antennal-lobe organization in desert ants of the genus Cataglyphis.
    Stieb SM; Kelber C; Wehner R; Rössler W
    Brain Behav Evol; 2011; 77(3):136-46. PubMed ID: 21502750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning walks in an Australian desert ant, Melophorus bagoti.
    Deeti S; Cheng K
    J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34435625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-related reorganization of giant synapses in the lateral complex: Potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphis fortis.
    Schmitt F; Stieb SM; Wehner R; Rössler W
    Dev Neurobiol; 2016 Apr; 76(4):390-404. PubMed ID: 26138802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and spread of nest search behaviour in the Saharan silver ant, Cataglyphis bombycina, and in the salt pan species, Cataglyphis fortis.
    Pfeffer S; Wahl V; Wolf H
    Anim Cogn; 2020 Nov; 23(6):1107-1117. PubMed ID: 32221733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oceili: a celestial compass in the desert ant cataglyphis.
    Fent K; Wehner R
    Science; 1985 Apr; 228(4696):192-4. PubMed ID: 17779641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti.
    Wystrach A; Schwarz S; Schultheiss P; Baniel A; Cheng K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jun; 200(6):591-601. PubMed ID: 24643623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of honeybee ocelli: Regional specializations and rhabdom arrangements.
    Ribi W; Warrant E; Zeil J
    Arthropod Struct Dev; 2011 Nov; 40(6):509-20. PubMed ID: 21945450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beginnings of a synthetic approach to desert ant navigation.
    Cheng K; Schultheiss P; Schwarz S; Wystrach A; Wehner R
    Behav Processes; 2014 Feb; 102():51-61. PubMed ID: 24129029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The visual system of the Australian 'Redeye' cicada (Psaltoda moerens).
    Ribi WA; Zeil J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):574-86. PubMed ID: 26335848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor.
    Labhart T
    Naturwissenschaften; 2000 Mar; 87(3):133-6. PubMed ID: 10798199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments.
    Bühlmann C; Cheng K; Wehner R
    J Exp Biol; 2011 Sep; 214(Pt 17):2845-53. PubMed ID: 21832127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments.
    Cheng K; Middleton EJ; Wehner R
    J Exp Biol; 2012 Sep; 215(Pt 18):3169-74. PubMed ID: 22693022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster.
    Stark WS; Sapp R; Carlson SD
    J Neurogenet; 1989 May; 5(2):127-53. PubMed ID: 2500507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.