These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31273462)

  • 21. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid.
    Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation.
    Nguyen VD; Schrlau MG; Tran SB; Bau HH; Ko HS; Byun D
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7298-302. PubMed ID: 19908776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement and Time Response of Electrohydrodynamic Direct-Writing Current.
    Zheng G; Xue W; Chen H; Sun L; Jiang J; Wang X; Guo S; Li W
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30691100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the hydrodynamic response of cells in drop on demand piezoelectric inkjet nozzles.
    Cheng E; Yu H; Ahmadi A; Cheung KC
    Biofabrication; 2016 Jan; 8(1):015008. PubMed ID: 26824728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids.
    Richner P; Kress SJ; Norris DJ; Poulikakos D
    Nanoscale; 2016 Mar; 8(11):6028-34. PubMed ID: 26928324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of wettability and surface tension in droplet formation during inkjet printing.
    He B; Yang S; Qin Z; Wen B; Zhang C
    Sci Rep; 2017 Sep; 7(1):11841. PubMed ID: 28928447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast on-off controlling of electrohydrodynamic printing based on AC oscillation induced voltage.
    Chen H; Chen J; Jiang J; Shao Z; Kang G; Wang X; Li W; Liu Y; Zheng G
    Sci Rep; 2023 Mar; 13(1):3790. PubMed ID: 36882512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology.
    Gong H; Huang J; Wang J; Zhao P; Guo M; Liang C; Bai D; Jiang Z; Li R
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4222-4230. PubMed ID: 38215444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electric field mediated spraying of miniaturized droplets inside microchannel.
    Timung S; Chaudhuri J; Borthakur MP; Mandal TK; Biswas G; Bandyopadhyay D
    Electrophoresis; 2017 Jun; 38(11):1450-1457. PubMed ID: 27747893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of Meniscus Formation Using an Electrohydrodynamics Module in Roll-to-Roll Systems for the Stable Coating of Functional Layers.
    Kim M; Jo M; Noh J; Lee S; Yun J; Cho G; Lee C
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Investigation of the Process Parameters of Electrohydrodynamic Direct-Writing and Their Effects on Fiber Surface Roughness and Cell Adhesion.
    Jiang C; Wang K; Jiang X; Zhang C; Wang B
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33113835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk
    Wang T; Si Y; Li N; Dong Z; Jiang L
    ACS Nano; 2019 Nov; 13(11):13100-13108. PubMed ID: 31702896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanodroplet Flight Control in Electrohydrodynamic Redox 3D Printing.
    Menétrey M; Zezulka L; Fandré P; Schmid F; Spolenak R
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1283-1292. PubMed ID: 38157367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement.
    Li K; Wang D; Yi S; Jia H; Qian J; Du Z; Ren T; Liang J; Martinez-Chapa SO; Madou M
    Rev Sci Instrum; 2019 Nov; 90(11):115001. PubMed ID: 31779448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel, Multi-Material Electrohydrodynamic 3D Nanoprinting.
    Chen M; Lee H; Yang J; Xu Z; Huang N; Chan BP; Kim JT
    Small; 2020 Apr; 16(13):e1906402. PubMed ID: 32101385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.
    Takahashi K; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012502. PubMed ID: 25122319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An electrohydrodynamic technique for rapid mixing in stationary droplets on digital microfluidic platforms.
    Samiei E; de Leon Derby MD; den Berg AV; Hoorfar M
    Lab Chip; 2017 Jan; 17(2):227-234. PubMed ID: 27957575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible Electrohydrodynamic Fluid-Driven Valveless Water Pump via Immiscible Interface.
    Mao Z; Hosoya N; Maeda S
    Cyborg Bionic Syst; 2024; 5():0091. PubMed ID: 38318499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical characterization of electrohydrodynamic micro- or nanopatterning processes based on a phase-field formulation of liquid dielectrophoresis.
    Tian H; Shao J; Ding Y; Li X; Liu H
    Langmuir; 2013 Apr; 29(15):4703-14. PubMed ID: 23506225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.