These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31273517)

  • 1. Individual and interactive effects of herbivory on plant fitness: endopolyploidy as a driver of genetic variation in tolerance and resistance.
    Mesa JM; Juvik JA; Paige KN
    Oecologia; 2019 Aug; 190(4):847-856. PubMed ID: 31273517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular constraints on resistance-tolerance trade-offs.
    Mesa JM; Scholes DR; Juvik JA; Paige KN
    Ecology; 2017 Oct; 98(10):2528-2537. PubMed ID: 28715081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in ploidy underlies plant fitness compensation to herbivore damage.
    Scholes DR; Paige KN
    Mol Ecol; 2014 Oct; 23(19):4862-70. PubMed ID: 25145792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Arabidopsis thaliana regrowth patterns suggests a trade-off between undamaged fitness and damage tolerance.
    Scholes DR; Rasnick EN; Paige KN
    Oecologia; 2017 Jul; 184(3):643-652. PubMed ID: 28647808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COSTS OF INDUCED RESPONSES AND TOLERANCE TO HERBIVORY IN MALE AND FEMALE FITNESS COMPONENTS OF WILD RADISH.
    Agrawal AA; Strauss SY; Stout MJ
    Evolution; 1999 Aug; 53(4):1093-1104. PubMed ID: 28565524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana.
    Bidart-Bouzat MG; Kliebenstein DJ
    J Chem Ecol; 2008 Aug; 34(8):1026-37. PubMed ID: 18581178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcompensation in response to herbivory in Arabidopsis thaliana: the role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway.
    Siddappaji MH; Scholes DR; Bohn M; Paige KN
    Genetics; 2013 Oct; 195(2):589-98. PubMed ID: 23934891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcompensation for insect herbivory: a review and meta-analysis of the evidence.
    Garcia LC; Eubanks MD
    Ecology; 2019 Mar; 100(3):e02585. PubMed ID: 30554427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulative herbivory outpaces compensation for early floral damage on a monocarpic perennial thistle.
    West NM; Louda SM
    Oecologia; 2018 Feb; 186(2):495-506. PubMed ID: 29218537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal plasticity: mitigating the impacts of herbivory.
    Scholes DR; Paige KN
    Ecology; 2011 Aug; 92(8):1691-8. PubMed ID: 21905435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfect Compensation Is Sufficient to Explain Insect Outbreaks Previously Attributed to Overcompensation : (A Comment on Stieha et al., "The Effects of Plant Compensatory Regrowth and Induced Resistance on Herbivore Population Dynamics").
    Abbott KC; Ji F
    Am Nat; 2022 Dec; 200(6):877-880. PubMed ID: 36409986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana.
    Kliebenstein D; Pedersen D; Barker B; Mitchell-Olds T
    Genetics; 2002 May; 161(1):325-32. PubMed ID: 12019246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory.
    Lau JA; Tiffin P
    Oecologia; 2009 Aug; 161(2):401-10. PubMed ID: 19504126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores.
    Kollasch AM; Abdul-Kafi AR; Body MJA; Pinto CF; Appel HM; Cocroft RB
    Oecologia; 2020 Oct; 194(1-2):1-13. PubMed ID: 32533358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: herbivore-imposed natural selection and the quantitative genetics of tolerance.
    Juenger T; Bergelson J
    Evolution; 2000 Jun; 54(3):764-77. PubMed ID: 10937251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediation of Impacts of Elevated CO
    Gog L; Berenbaum MR; DeLucia EH
    J Chem Ecol; 2019 Jan; 45(1):61-73. PubMed ID: 30465148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcompensation, environmental stress, and the role of endoreduplication.
    Paige KN
    Am J Bot; 2018 Jul; 105(7):1105-1108. PubMed ID: 30070685
    [No Abstract]   [Full Text] [Related]  

  • 18. PAIRWISE VERSUS DIFFUSE NATURAL SELECTION AND THE MULTIPLE HERBIVORES OF SCARLET GILIA, IPOMOPSIS AGGREGATA.
    Juenger T; Bergelson J
    Evolution; 1998 Dec; 52(6):1583-1592. PubMed ID: 28565335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of invertases in plant compensatory responses to simulated herbivory.
    Siddappaji MH; Scholes DR; Krishnankutty SM; Calla B; Clough SJ; Zielinski RE; Paige KN
    BMC Plant Biol; 2015 Nov; 15():278. PubMed ID: 26572986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana.
    Brachi B; Meyer CG; Villoutreix R; Platt A; Morton TC; Roux F; Bergelson J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4032-7. PubMed ID: 25775585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.