These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31273627)

  • 1. MEAnalyzer - a Spike Train Analysis Tool for Multi Electrode Arrays.
    Dastgheyb RM; Yoo SW; Haughey NJ
    Neuroinformatics; 2020 Jan; 18(1):163-179. PubMed ID: 31273627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEA-ToolBox: an Open Source Toolbox for Standardized Analysis of Multi-Electrode Array Data.
    Hu M; Frega M; Tolner EA; van den Maagdenberg AMJM; Frimat JP; le Feber J
    Neuroinformatics; 2022 Oct; 20(4):1077-1092. PubMed ID: 35680724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.
    Egert U; Knott T; Schwarz C; Nawrot M; Brandt A; Rotter S; Diesmann M
    J Neurosci Methods; 2002 May; 117(1):33-42. PubMed ID: 12084562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative analysis platform for multiple neural spike train data.
    Huang Y; Li X; Li Y; Xu Q; Lu Q; Liu Q
    J Neurosci Methods; 2008 Jul; 172(2):303-11. PubMed ID: 18538855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iRaster: a novel information visualization tool to explore spatiotemporal patterns in multiple spike trains.
    Somerville J; Stuart L; Sernagor E; Borisyuk R
    J Neurosci Methods; 2010 Dec; 194(1):158-71. PubMed ID: 20875457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays.
    Gelfman S; Wang Q; Lu YF; Hall D; Bostick CD; Dhindsa R; Halvorsen M; McSweeney KM; Cotterill E; Edinburgh T; Beaumont MA; Frankel WN; Petrovski S; Allen AS; Boland MJ; Goldstein DB; Eglen SJ
    PLoS Comput Biol; 2018 Oct; 14(10):e1006506. PubMed ID: 30273353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPIKY: a graphical user interface for monitoring spike train synchrony.
    Kreuz T; Mulansky M; Bozanic N
    J Neurophysiol; 2015 May; 113(9):3432-45. PubMed ID: 25744888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPICODYN: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings.
    Pastore VP; Godjoski A; Martinoia S; Massobrio P
    Neuroinformatics; 2018 Jan; 16(1):15-30. PubMed ID: 28988388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interactive tool for visualization of spike train synchronization.
    Terry K
    J Neurosci Methods; 2010 Aug; 191(1):145-8. PubMed ID: 20621707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale recording of neuronal ensembles.
    Buzsáki G
    Nat Neurosci; 2004 May; 7(5):446-51. PubMed ID: 15114356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs).
    Ness TV; Chintaluri C; Potworowski J; Łęski S; Głąbska H; Wójcik DK; Einevoll GT
    Neuroinformatics; 2015 Oct; 13(4):403-26. PubMed ID: 25822810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular 256-channel micro electrode array platform for in vitro and in vivo neural stimulation and recording: BioMEA.
    Charvet G; Billoint O; Gharbi S; Heuschkel M; Georges C; Kauffmann T; Pellissier A; Yvert B; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1804-7. PubMed ID: 21095937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Visual Guide to Sorting Electrophysiological Recordings Using 'SpikeSorter'.
    Swindale NV; Mitelut C; Murphy TH; Spacek MA
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Copula-Based Granger Causality Measure for the Analysis of Neural Spike Train Data.
    Hu M; Li W; Liang H
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):562-569. PubMed ID: 29610104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination and quantification of pharmacological, physiological, or behavioral manipulations on ensembles of simultaneously recorded neurons in functionally related neural circuits.
    Devilbiss DM; Waterhouse BD
    J Neurosci Methods; 2002 Dec; 121(2):181-98. PubMed ID: 12468008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of multi-variate analysis of variance (MANOVA) to multi-electrode array electrophysiology data.
    Horton PM; Bonny L; Nicol AU; Kendrick KM; Feng JF
    J Neurosci Methods; 2005 Jul; 146(1):22-41. PubMed ID: 16001456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tool for synthesizing spike trains with realistic interference.
    Smith LS; Mtetwa N
    J Neurosci Methods; 2007 Jan; 159(1):170-80. PubMed ID: 16887194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic spike train analysis and report generation. An implementation with R, R2HTML and STAR.
    Pouzat C; Chaffiol A
    J Neurosci Methods; 2009 Jun; 181(1):119-44. PubMed ID: 19473708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Spontaneous Neuronal Activity
    Negri J; Menon V; Young-Pearse TL
    eNeuro; 2020; 7(1):. PubMed ID: 31896559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.