BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31273656)

  • 1. BIO_ALGAE 2: improved model of microalgae and bacteria consortia for wastewater treatment.
    Solimeno A; Gómez-Serrano C; Acién FG
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25855-25868. PubMed ID: 31273656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model.
    Solimeno A; García J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1818-1831. PubMed ID: 30286350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds.
    Solimeno A; Parker L; Lundquist T; García J
    Sci Total Environ; 2017 Dec; 601-602():646-657. PubMed ID: 28577400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.
    Sutherland DL; Montemezzani V; Mehrabadi A; Craggs RJ
    Water Res; 2016 Feb; 89():301-8. PubMed ID: 26707731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing Microalgae and Nitrifiers for Wastewater Treatment: Can Inorganic Carbon Limitation Cause an Environmental Threat?
    Casagli F; Rossi S; Steyer JP; Bernard O; Ficara E
    Environ Sci Technol; 2021 Mar; 55(6):3940-3955. PubMed ID: 33657315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden.
    Lage S; Toffolo A; Gentili FG
    Chemosphere; 2021 Aug; 276():130122. PubMed ID: 33690042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review.
    Zhang C; Li S; Ho SH
    Bioresour Technol; 2021 Dec; 342():126056. PubMed ID: 34601027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate.
    de Godos I; Arbib Z; Lara E; Rogalla F
    Bioresour Technol; 2016 Nov; 220():253-261. PubMed ID: 27579799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ALBA: A comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds.
    Casagli F; Zuccaro G; Bernard O; Steyer JP; Ficara E
    Water Res; 2021 Feb; 190():116734. PubMed ID: 33373944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques.
    Mu R; Jia Y; Ma G; Liu L; Hao K; Qi F; Shao Y
    Water Environ Res; 2021 Aug; 93(8):1217-1230. PubMed ID: 33305497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond.
    Van Den Hende S; Beelen V; Bore G; Boon N; Vervaeren H
    Bioresour Technol; 2014 May; 159():342-54. PubMed ID: 24662311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABACO-2: a comprehensive model for microalgae-bacteria consortia validated outdoor at pilot-scale.
    Nordio R; Rodríguez-Miranda E; Casagli F; Sánchez-Zurano A; Guzmán JL; Acién G
    Water Res; 2024 Jan; 248():120837. PubMed ID: 37984038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review.
    Fallahi A; Rezvani F; Asgharnejad H; Khorshidi Nazloo E; Hajinajaf N; Higgins B
    Chemosphere; 2021 Jun; 272():129878. PubMed ID: 35534965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater.
    Nagabalaji V; Maharaja P; Nishanthi R; Sathish G; Suthanthararajan R; Srinivasan SV
    J Environ Manage; 2023 Sep; 341():118008. PubMed ID: 37146488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions.
    Robles Á; Capson-Tojo G; Galès A; Ruano MV; Sialve B; Ferrer J; Steyer JP
    J Environ Manage; 2020 May; 261():110244. PubMed ID: 32148311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.
    Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY
    Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.
    Kim BH; Kang Z; Ramanan R; Choi JE; Cho DH; Oh HM; Kim HS
    J Microbiol Biotechnol; 2014 Aug; 24(8):1123-32. PubMed ID: 24759425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area.
    Pizzera A; Scaglione D; Bellucci M; Marazzi F; Mezzanotte V; Parati K; Ficara E
    Bioresour Technol; 2019 Feb; 274():232-243. PubMed ID: 30513411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable treatment of primary and secondary effluent by algal-bacterial flocculent biomass in raceway ponds.
    Biliani SE; Manariotis ID
    J Environ Manage; 2023 Oct; 343():118167. PubMed ID: 37229856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.