These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31273667)
1. Modeling and uncertainty analysis of seawater intrusion based on surrogate models. Miao T; Lu W; Guo J; Lin J; Fan Y Environ Sci Pollut Res Int; 2019 Sep; 26(25):26015-26025. PubMed ID: 31273667 [TBL] [Abstract][Full Text] [Related]
2. Uncertainty analysis for precipitation and sea-level rise of a variable-density groundwater simulation model based on surrogate models. Han Z; Lu W; Lin J Environ Sci Pollut Res Int; 2020 Aug; 27(22):28077-28090. PubMed ID: 32405952 [TBL] [Abstract][Full Text] [Related]
3. Stochastic simulation of seawater intrusion in the Longkou area of China based on the Monte Carlo method. Fan Y; Wu Q; Cui H; Lu W; Ren W Environ Sci Pollut Res Int; 2023 Feb; 30(8):22063-22077. PubMed ID: 36280633 [TBL] [Abstract][Full Text] [Related]
4. Application of artificial intelligence deep learning in numerical simulation of seawater intrusion. Miao T; Guo J Environ Sci Pollut Res Int; 2021 Oct; 28(38):54096-54104. PubMed ID: 34046828 [TBL] [Abstract][Full Text] [Related]
5. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models. Jiang X; Na J; Lu W; Zhang Y Environ Sci Pollut Res Int; 2017 Nov; 24(31):24284-24296. PubMed ID: 28889205 [TBL] [Abstract][Full Text] [Related]
6. Quasi-Monte Carlo based global uncertainty and sensitivity analysis in modeling free product migration and recovery from petroleum-contaminated aquifers. He L; Huang G; Lu H; Wang S; Xu Y J Hazard Mater; 2012 Jun; 219-220():133-40. PubMed ID: 22520074 [TBL] [Abstract][Full Text] [Related]
7. Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction. Kopsiaftis G; Protopapadakis E; Voulodimos A; Doulamis N; Mantoglou A Comput Intell Neurosci; 2019; 2019():2859429. PubMed ID: 30800156 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related]
9. Sea water intrusion by sea-level rise: scenarios for the 21st century. Loáiciga HA; Pingel TJ; Garcia ES Ground Water; 2012; 50(1):37-47. PubMed ID: 21352208 [TBL] [Abstract][Full Text] [Related]
10. Latin hypercube approach to estimate uncertainty in ground water vulnerability. Gurdak JJ; McCray JE; Thyne G; Qi SL Ground Water; 2007; 45(3):348-61. PubMed ID: 17470124 [TBL] [Abstract][Full Text] [Related]
12. Using orthogonal array sampling to cope with uncertainty in ground water problems. Baalousha H Ground Water; 2009; 47(5):709-13. PubMed ID: 19735309 [TBL] [Abstract][Full Text] [Related]
13. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion. Zeng X; Wu J; Wang D; Zhu X Environ Res; 2016 Jul; 148():586-594. PubMed ID: 26620978 [TBL] [Abstract][Full Text] [Related]
14. Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of Western Jilin Province. An Y; Lu W; Cheng W Int J Environ Res Public Health; 2015 Jul; 12(8):8897-918. PubMed ID: 26264008 [TBL] [Abstract][Full Text] [Related]
15. Uncertainty analysis in WWTP model applications: a critical discussion using an example from design. Sin G; Gernaey KV; Neumann MB; van Loosdrecht MC; Gujer W Water Res; 2009 Jun; 43(11):2894-906. PubMed ID: 19447462 [TBL] [Abstract][Full Text] [Related]
16. An uncertainty analysis of the flood-stage upstream from a bridge. Sowiński M Water Sci Technol; 2006; 53(1):77-84. PubMed ID: 16532737 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of seawater composition in a vast area from the Monte Carlo simulation of georeferenced information in a Bayesian framework. Borges C; Palma C; Dadamos T; Bettencourt da Silva RJN Chemosphere; 2021 Jan; 263():128036. PubMed ID: 33297054 [TBL] [Abstract][Full Text] [Related]
18. Review of machine learning-based surrogate models of groundwater contaminant modeling. Luo J; Ma X; Ji Y; Li X; Song Z; Lu W Environ Res; 2023 Dec; 238(Pt 2):117268. PubMed ID: 37776938 [TBL] [Abstract][Full Text] [Related]
19. Multiobjective optimization of the groundwater exploitation layout in coastal areas based on multiple surrogate models. Fan Y; Lu W; Miao T; Li J; Lin J Environ Sci Pollut Res Int; 2020 Jun; 27(16):19561-19576. PubMed ID: 32215802 [TBL] [Abstract][Full Text] [Related]
20. Comparison of interval and Monte Carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus. Calm R; García-Jaramillo M; Bondia J; Sainz MA; Vehí J Comput Methods Programs Biomed; 2011 Dec; 104(3):325-32. PubMed ID: 20870308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]