These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1145 related articles for article (PubMed ID: 31273962)
1. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
2. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure. Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657 [TBL] [Abstract][Full Text] [Related]
4. Cancellous bone from porous Ti6Al4V by multiple coating technique. Li JP; Li SH; Van Blitterswijk CA; de Groot K J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251 [TBL] [Abstract][Full Text] [Related]
5. Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Bartolomeu F; Dourado N; Pereira F; Alves N; Miranda G; Silva FS Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110342. PubMed ID: 31761155 [TBL] [Abstract][Full Text] [Related]
6. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846 [TBL] [Abstract][Full Text] [Related]
7. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Parthasarathy J; Starly B; Raman S; Christensen A J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109 [TBL] [Abstract][Full Text] [Related]
8. Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants. Bartolomeu F; Fonseca J; Peixinho N; Alves N; Gasik M; Silva FS; Miranda G J Mech Behav Biomed Mater; 2019 Nov; 99():104-117. PubMed ID: 31349147 [TBL] [Abstract][Full Text] [Related]
10. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467 [TBL] [Abstract][Full Text] [Related]
11. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
12. Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923 [TBL] [Abstract][Full Text] [Related]
13. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
14. Bionic mechanical design and SLM manufacture of porous Ti6Al4V scaffolds for load-bearing cancellous bone implants. Liao BO; Xu C; Li W; Lu D; Jin ZM Acta Bioeng Biomech; 2021; 23(3):97-107. PubMed ID: 34978311 [TBL] [Abstract][Full Text] [Related]
15. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. Song K; Wang Z; Lan J; Ma S J Mech Behav Biomed Mater; 2021 Mar; 115():104222. PubMed ID: 33310682 [TBL] [Abstract][Full Text] [Related]
16. Development and mechanical characterization of porous titanium bone substitutes. Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281 [TBL] [Abstract][Full Text] [Related]
17. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds. Zaharin HA; Abdul Rani AM; Azam FI; Ginta TL; Sallih N; Ahmad A; Yunus NA; Zulkifli TZA Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487419 [TBL] [Abstract][Full Text] [Related]
18. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications. Li F; Li J; Kou H; Huang T; Zhou L J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823 [TBL] [Abstract][Full Text] [Related]
19. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]