BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31274022)

  • 21. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea).
    Salido AL; Hasty KL; Lim JM; Butcher DJ
    Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration.
    Wan XM; Lei M; Liu YR; Huang ZC; Chen TB; Gao D
    Sci Total Environ; 2013 Jan; 442():143-51. PubMed ID: 23178774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction.
    Lessl JT; Luo J; Ma LQ
    J Hazard Mater; 2014 Aug; 279():485-92. PubMed ID: 25108101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.
    Tu S; Ma LQ; Fayiga AO; Zillioux EJ
    Int J Phytoremediation; 2004; 6(1):35-47. PubMed ID: 15224774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.
    Huang Y; Miyauchi K; Inoue C; Endo G
    Biosci Biotechnol Biochem; 2016; 80(3):614-8. PubMed ID: 26549187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata.
    Das S; Chou ML; Jean JS; Yang HJ; Kim PJ
    J Hazard Mater; 2017 Mar; 325():279-287. PubMed ID: 27940117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.
    Liu L; Li W; Song W; Guo M
    Sci Total Environ; 2018 Aug; 633():206-219. PubMed ID: 29573687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.
    Raj A; Singh N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):308-13. PubMed ID: 25666567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.
    Yan X; Zhang M; Liao X; Tu S
    Chemosphere; 2012 Jun; 88(2):240-4. PubMed ID: 22463947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.
    Zhao J; Guo H; Ma J; Shen Z
    Int J Phytoremediation; 2015; 17(1-6):355-62. PubMed ID: 25409248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.
    Liao XY; Chen TB; Xiao XY; Xie H; Yan XL; Zhai LM; Wu B
    Int J Phytoremediation; 2007; 9(4):269-80. PubMed ID: 18246706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytoremediation of diphenylarsinic-acid-contaminated soil by Pteris vittata associated with Phyllobacterium myrsinacearum RC6b.
    Teng Y; Feng S; Ren W; Zhu L; Ma W; Christie P; Luo Y
    Int J Phytoremediation; 2017 May; 19(5):463-469. PubMed ID: 27739905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of different forms of P fertilizers on phytoremediation for As-contaminated soils using As-hyperaccumulator Pteris vittata L].
    Liao XY; Chen TB; Yan XL; Xie H; Xiao XY; Zhai LM
    Huan Jing Ke Xue; 2008 Oct; 29(10):2906-11. PubMed ID: 19143393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study.
    da Silva EB; Lessl JT; Wilkie AC; Liu X; Liu Y; Ma LQ
    Chemosphere; 2018 Sep; 206():736-741. PubMed ID: 29793065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic, lead and cadmium removal potential of
    Rahman F; Sugawara K; Huang Y; Chien MF; Inoue C
    Int J Phytoremediation; 2018; 20(12):1187-1193. PubMed ID: 31274027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C
    Chemosphere; 2019 Apr; 220():237-248. PubMed ID: 30584955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
    Gonzaga MI; Ma LQ; Pacheco EP; dos Santos WM
    Int J Phytoremediation; 2012 Dec; 14(10):939-49. PubMed ID: 22908656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba.
    Wan X; Lei M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata.
    Han YH; Liu X; Rathinasabapathi B; Li HB; Chen Y; Ma LQ
    Environ Pollut; 2017 Aug; 227():569-577. PubMed ID: 28501771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.