These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31274099)
81. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT]. Iaglova NV; Iaglov VV Biomed Khim; 2014; 60(6):655-60. PubMed ID: 25552505 [TBL] [Abstract][Full Text] [Related]
82. Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. Ahmed RG J Endocrinol; 2013 Dec; 219(3):205-15. PubMed ID: 24167152 [TBL] [Abstract][Full Text] [Related]
83. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review. Builee TL; Hatherill JR Drug Chem Toxicol; 2004 Nov; 27(4):405-24. PubMed ID: 15573475 [TBL] [Abstract][Full Text] [Related]
84. Sex Differences in the Production of SLC5A5, Thyroid Peroxidase, and Thyroid Hormones in Pubertal Rats Exposed to Endocrine Disruptor Dichlorodiphenyltrichloroethane (DDT) during Postnatal Ontogeny. Yaglova NV; Sledneva YP; Nazimova SV; Obernikhin SS; Yaglov VV Bull Exp Biol Med; 2018 Mar; 164(4):430-433. PubMed ID: 29500802 [TBL] [Abstract][Full Text] [Related]
85. Semicarbazide-induced thyroid disruption in Japanese flounder (Paralichthys olivaceus) and its potential mechanisms. Yue Z; Yu M; Zhang X; Dong Y; Tian H; Wang W; Ru S Ecotoxicol Environ Saf; 2017 Jun; 140():131-140. PubMed ID: 28254723 [TBL] [Abstract][Full Text] [Related]
86. Overview of Cadmium Thyroid Disrupting Effects and Mechanisms. Buha A; Matovic V; Antonijevic B; Bulat Z; Curcic M; Renieri EA; Tsatsakis AM; Schweitzer A; Wallace D Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29772829 [TBL] [Abstract][Full Text] [Related]
87. Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Schnitzler JG; Frédérich B; Dussenne M; Klaren PH; Silvestre F; Das K Aquat Toxicol; 2016 Dec; 181():1-10. PubMed ID: 27810487 [TBL] [Abstract][Full Text] [Related]
88. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Pinson A; Bourguignon JP; Parent AS Andrology; 2016 Jul; 4(4):706-22. PubMed ID: 27285165 [TBL] [Abstract][Full Text] [Related]
89. Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. Román GC J Neurol Sci; 2007 Nov; 262(1-2):15-26. PubMed ID: 17651757 [TBL] [Abstract][Full Text] [Related]
90. Evaluation of ammonium perchlorate in the endocrine disruptor screening and testing program's male pubertal protocol: ability to detect effects on thyroid endpoints. Stoker TE; Ferrell JM; Laws SC; Cooper RL; Buckalew A Toxicology; 2006 Nov; 228(1):58-65. PubMed ID: 17011691 [TBL] [Abstract][Full Text] [Related]
91. Toxicogenomic analysis of the ability of brominated flame retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Guyot R; Chatonnet F; Gillet B; Hughes S; Flamant F Toxicology; 2014 Nov; 325():125-32. PubMed ID: 25172293 [TBL] [Abstract][Full Text] [Related]
92. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Matoso V; Bargi-Souza P; Ivanski F; Romano MA; Romano RM Food Chem; 2019 Jun; 283():422-430. PubMed ID: 30722893 [TBL] [Abstract][Full Text] [Related]
93. Waterborne exposure to bisphenol F causes thyroid endocrine disruption in zebrafish larvae. Huang GM; Tian XF; Fang XD; Ji FJ Chemosphere; 2016 Mar; 147():188-94. PubMed ID: 26766355 [TBL] [Abstract][Full Text] [Related]
94. A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Wang Y; Chen T; Sun Y; Zhao X; Zheng D; Jing L; Zhou X; Sun Z; Shi Z Ecotoxicol Environ Saf; 2019 Jun; 174():224-235. PubMed ID: 30844666 [TBL] [Abstract][Full Text] [Related]
96. Thyroid Function: A Target for Endocrine Disruptors, Air Pollution and Radiofrequencies. Di Ciaula A; Bonfrate L; Noviello M; Portincasa P Endocr Metab Immune Disord Drug Targets; 2023; 23(8):1032-1040. PubMed ID: 34503436 [TBL] [Abstract][Full Text] [Related]
97. They Came from the Dust: Indoor Endocrine Disruptors and Thyroid-Hormone Binding. Barrett JR Environ Health Perspect; 2020 Jul; 128(7):74007. PubMed ID: 32750249 [TBL] [Abstract][Full Text] [Related]
98. [Environmental endocrine disruptors, what risks for children?]. Despert F Rev Prat; 2020 Apr; 70(4):434-439. PubMed ID: 32877104 [TBL] [Abstract][Full Text] [Related]
99. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Seralini GE; Jungers G Toxicol Rep; 2021; 8():1538-1557. PubMed ID: 34430217 [TBL] [Abstract][Full Text] [Related]
100. Iodine as a potential endocrine disruptor-a role of oxidative stress. Karbownik-Lewińska M; Stępniak J; Iwan P; Lewiński A Endocrine; 2022 Nov; 78(2):219-240. PubMed ID: 35726078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]