These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
840 related articles for article (PubMed ID: 31274194)
1. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related]
2. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
3. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Wu S; Weinstein SP; Conant EF; Kontos D Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533 [TBL] [Abstract][Full Text] [Related]
4. Automated mammographic breast density estimation using a fully convolutional network. Lee J; Nishikawa RM Med Phys; 2018 Mar; 45(3):1178-1190. PubMed ID: 29363774 [TBL] [Abstract][Full Text] [Related]
5. Computer-Aided Diagnosis in Multiparametric Magnetic Resonance Imaging Screening of Women With Extremely Dense Breasts to Reduce False-Positive Diagnoses. Verburg E; van Gils CH; Bakker MF; Viergever MA; Pijnappel RM; Veldhuis WB; Gilhuijs KGA Invest Radiol; 2020 Jul; 55(7):438-444. PubMed ID: 32149858 [TBL] [Abstract][Full Text] [Related]
6. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial. Verburg E; van Gils CH; van der Velden BHM; Bakker MF; Pijnappel RM; Veldhuis WB; Gilhuijs KGA Radiology; 2022 Jan; 302(1):29-36. PubMed ID: 34609196 [TBL] [Abstract][Full Text] [Related]
8. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914 [TBL] [Abstract][Full Text] [Related]
9. Template-based automatic breast segmentation on MRI by excluding the chest region. Lin M; Chen JH; Wang X; Chan S; Chen S; Su MY Med Phys; 2013 Dec; 40(12):122301. PubMed ID: 24320532 [TBL] [Abstract][Full Text] [Related]
10. Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning. Pennig L; Hoyer UCI; Goertz L; Shahzad R; Persigehl T; Thiele F; Perkuhn M; Ruge MI; Kabbasch C; Borggrefe J; Caldeira L; Laukamp KR J Magn Reson Imaging; 2021 Jan; 53(1):259-268. PubMed ID: 32662130 [TBL] [Abstract][Full Text] [Related]
11. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262 [TBL] [Abstract][Full Text] [Related]
12. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
13. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611 [TBL] [Abstract][Full Text] [Related]
14. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Lin M; Chan S; Chen JH; Chang D; Nie K; Chen ST; Lin CJ; Shih TC; Nalcioglu O; Su MY Med Phys; 2011 Jan; 38(1):5-14. PubMed ID: 21361169 [TBL] [Abstract][Full Text] [Related]
15. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging. Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235 [TBL] [Abstract][Full Text] [Related]
16. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130 [TBL] [Abstract][Full Text] [Related]
17. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Jiang J; Hu YC; Tyagi N; Wang C; Lee N; Deasy JO; Sean B; Veeraraghavan H Phys Med Biol; 2020 Oct; 65(20):205001. PubMed ID: 33027063 [TBL] [Abstract][Full Text] [Related]
18. Automated breast-region segmentation in the axial breast MR images. Milenković J; Chambers O; Marolt Mušič M; Tasič JF Comput Biol Med; 2015 Jul; 62():55-64. PubMed ID: 25912987 [TBL] [Abstract][Full Text] [Related]
19. Localized-atlas-based segmentation of breast MRI in a decision-making framework. Fooladivanda A; Shokouhi SB; Ahmadinejad N Australas Phys Eng Sci Med; 2017 Mar; 40(1):69-84. PubMed ID: 28116639 [TBL] [Abstract][Full Text] [Related]