These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31274277)

  • 1. Vibrational Sensing Using Infrared Nanoantennas: Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose.
    Kühner L; Semenyshyn R; Hentschel M; Neubrech F; Tarín C; Giessen H
    ACS Sens; 2019 Aug; 4(8):1973-1979. PubMed ID: 31274277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Method for Quantitative Estimation of Glucose and Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics.
    Schuler B; Kühner L; Hentschel M; Giessen H; Tarín C
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31373287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Concentrations of Mixed Sugar Solutions with a Combination of Resonant Plasmon-Enhanced SEIRA and Principal Component Analysis.
    Pfezer D; Karst J; Hentschel M; Giessen H
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing.
    Corcione E; Pfezer D; Hentschel M; Giessen H; Tarín C
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of pure component spectra by independent component analysis in glucose prediction based on mid-infrared spectroscopy.
    Hahn S; Yoon G
    Appl Opt; 2006 Nov; 45(32):8374-80. PubMed ID: 17068585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis.
    Wang J; Kliks MM; Jun S; Jackson M; Li QX
    J Food Sci; 2010 Mar; 75(2):C208-14. PubMed ID: 20492227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [In-Vivo Noninvasive Measurement of Human Blood Glucose Levels by Mid-Infrared Spectrograph with External CO(2) Laser Source].
    Zhang QQ; Fan YL; He XQ; Sun YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):85-8. PubMed ID: 30192485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.
    Kanou M; Kameoka T; Suehara KI; Hashimoto A
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):735-742. PubMed ID: 28300505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing.
    Boujday S; de la Chapelle ML; Srajer J; Knoll W
    Sensors (Basel); 2015 Aug; 15(9):21239-64. PubMed ID: 26343666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid.
    Alexeev VL; Das S; Finegold DN; Asher SA
    Clin Chem; 2004 Dec; 50(12):2353-60. PubMed ID: 15459093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterospectral two-dimensional correlation spectroscopy of mid-infrared and Fourier self-deconvolved near-infrared spectra of sugar solutions.
    Cocciardi RA; Ismail AA; Wang Y; Sedman J
    J Agric Food Chem; 2006 Sep; 54(18):6475-81. PubMed ID: 16939300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-sensitive membrane and infrared absorption spectroscopy for potential use as an implantable glucose sensor.
    Robinson RJ; McDonald SD
    ASAIO J; 1992; 38(3):M458-62. PubMed ID: 1457902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.
    Daikuzono CM; Delaney C; Tesfay H; Florea L; Oliveira ON; Morrin A; Diamond D
    Analyst; 2017 Mar; 142(7):1133-1139. PubMed ID: 28300229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial extent of plasmonic enhancement of vibrational signals in the infrared.
    Neubrech F; Beck S; Glaser T; Hentschel M; Giessen H; Pucci A
    ACS Nano; 2014 Jun; 8(6):6250-8. PubMed ID: 24811345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of multi-component sugar aqueous solution in low-concentration by near-infrared spectrometry].
    Hu B; Chen D; Su QD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1049-52. PubMed ID: 16241052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoliter Sensing for Infrared Bioanalytics.
    Kratz C; Furchner A; Oates TWH; Janasek D; Hinrichs K
    ACS Sens; 2018 Feb; 3(2):299-303. PubMed ID: 29405057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualifying label components for effective biosensing using advanced high-throughput SEIRA methodology.
    Hornemann A; Eichert D; Flemig S; Ulm G; Beckhoff B
    Phys Chem Chem Phys; 2015 Apr; 17(14):9471-9. PubMed ID: 25765006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an integrated electrochemical biosensor for sucrose and its implementation in a continuous flow system for the simultaneous monitoring of sucrose, fructose and glucose.
    Vargas E; Gamella M; Campuzano S; Guzmán-Vázquez de Prada A; Ruiz MA; Reviejo AJ; Pingarrón JM
    Talanta; 2013 Feb; 105():93-100. PubMed ID: 23597994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate analysis of floral nectar using medium infrared.
    Ortiz CM; Castro IP; Portilla LB; Aranda PD; Arizmendi Mdel C
    Phytochem Anal; 2003; 14(5):319-24. PubMed ID: 14516006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning.
    Aloraynan A; Rassel S; Xu C; Ban D
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.