These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 31274358)
1. Assessing automatic VOT annotation using unimpaired and impaired speech. Buz E; Buchwald A; Fuchs T; Keshet J Int J Speech Lang Pathol; 2018 Nov; 20(6):624-634. PubMed ID: 31274358 [TBL] [Abstract][Full Text] [Related]
2. Repertoire-wide gene structure analyses: a case study comparing automatically predicted and manually annotated gene models. Wilbrandt J; Misof B; Panfilio KA; Niehuis O BMC Genomics; 2019 Oct; 20(1):753. PubMed ID: 31623555 [TBL] [Abstract][Full Text] [Related]
3. Is automatic speech-to-text transcription ready for use in psychological experiments? Ziman K; Heusser AC; Fitzpatrick PC; Field CE; Manning JR Behav Res Methods; 2018 Dec; 50(6):2597-2605. PubMed ID: 29687235 [TBL] [Abstract][Full Text] [Related]
4. Examining Factors Influencing the Viability of Automatic Acoustic Analysis of Child Speech. Knowles T; Clayards M; Sonderegger M J Speech Lang Hear Res; 2018 Oct; 61(10):2487-2501. PubMed ID: 30458531 [TBL] [Abstract][Full Text] [Related]
5. Automatic analysis of slips of the tongue: Insights into the cognitive architecture of speech production. Goldrick M; Keshet J; Gustafson E; Heller J; Needle J Cognition; 2016 Apr; 149():31-9. PubMed ID: 26779665 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised speech segmentation: an analysis of the hypothesized phone boundaries. Scharenborg O; Wan V; Ernestus M J Acoust Soc Am; 2010 Feb; 127(2):1084-95. PubMed ID: 20136229 [TBL] [Abstract][Full Text] [Related]
7. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance. Hantke S; Weninger F; Kurle R; Ringeval F; Batliner A; Mousa Ael-D; Schuller B PLoS One; 2016; 11(5):e0154486. PubMed ID: 27176486 [TBL] [Abstract][Full Text] [Related]
8. A Biomedically oriented automatically annotated Twitter COVID-19 Dataset. Robles Hernandez LA; Callahan TJ; Banda JM ArXiv; 2021 Jul; ():. PubMed ID: 34341767 [TBL] [Abstract][Full Text] [Related]
9. Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model. Zhang Y; Folarin AA; Dineley J; Conde P; de Angel V; Sun S; Ranjan Y; Rashid Z; Stewart C; Laiou P; Sankesara H; Qian L; Matcham F; White K; Oetzmann C; Lamers F; Siddi S; Simblett S; Schuller BW; Vairavan S; Wykes T; Haro JM; Penninx BWJH; Narayan VA; Hotopf M; Dobson RJB; Cummins N; J Affect Disord; 2024 Jun; 355():40-49. PubMed ID: 38552911 [TBL] [Abstract][Full Text] [Related]
10. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech. Agarwalla S; Sarma KK Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204 [TBL] [Abstract][Full Text] [Related]
11. Automatic speech recognition to aid the hearing impaired: prospects for the automatic generation of cued speech. Uchanski RM; Delhorne LA; Dix AK; Braida LD; Reed CM; Durlach NI J Rehabil Res Dev; 1994; 31(1):20-41. PubMed ID: 8035358 [TBL] [Abstract][Full Text] [Related]
12. Statistical properties of infant-directed versus adult-directed speech: insights from speech recognition. Kirchhoff K; Schimmel S J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2238-46. PubMed ID: 15898664 [TBL] [Abstract][Full Text] [Related]
13. Automatic speech recognition: A primer for speech-language pathology researchers. Keshet J Int J Speech Lang Pathol; 2018 Nov; 20(6):599-609. PubMed ID: 31274357 [TBL] [Abstract][Full Text] [Related]
14. Determining and assessing characteristics of data element names impacting the performance of annotation using Usagi. de Groot R; Püttmann DP; Fleuren LM; Thoral PJ; Elbers PWG; de Keizer NF; Cornet R; Int J Med Inform; 2023 Oct; 178():105200. PubMed ID: 37703800 [TBL] [Abstract][Full Text] [Related]
15. Computerized content analysis of speech plus speech recognition in the measurement of neuropsychiatric dimensions. Gottschalk LA; Bechtel RJ Comput Methods Programs Biomed; 2005 Jan; 77(1):81-6. PubMed ID: 15639712 [TBL] [Abstract][Full Text] [Related]
16. Speech production knowledge in automatic speech recognition. King S; Frankel J; Livescu K; McDermott E; Richmond K; Wester M J Acoust Soc Am; 2007 Feb; 121(2):723-42. PubMed ID: 17348495 [TBL] [Abstract][Full Text] [Related]
17. Difficulties in automatic speech recognition of dysarthric speakers and implications for speech-based applications used by the elderly: a literature review. Young V; Mihailidis A Assist Technol; 2010; 22(2):99-112; quiz 113-4. PubMed ID: 20698428 [TBL] [Abstract][Full Text] [Related]
18. Haptic exploratory behavior during object discrimination: a novel automatic annotation method. Jansen SE; Bergmann Tiest WM; Kappers AM PLoS One; 2015; 10(2):e0117017. PubMed ID: 25658703 [TBL] [Abstract][Full Text] [Related]
19. The influence of age, hearing, and working memory on the speech comprehension benefit derived from an automatic speech recognition system. Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T Ear Hear; 2009 Apr; 30(2):262-72. PubMed ID: 19194286 [TBL] [Abstract][Full Text] [Related]
20. Fully Automatic Speech-Based Analysis of the Semantic Verbal Fluency Task. König A; Linz N; Tröger J; Wolters M; Alexandersson J; Robert P Dement Geriatr Cogn Disord; 2018; 45(3-4):198-209. PubMed ID: 29886493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]