These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31274390)

  • 1. Progressive Recruitment of the Frontoparietal Multiple-demand System with Increased Task Complexity, Time Pressure, and Reward.
    Shashidhara S; Mitchell DJ; Erez Y; Duncan J
    J Cogn Neurosci; 2019 Nov; 31(11):1617-1630. PubMed ID: 31274390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations.
    Gerlach KD; Spreng RN; Madore KP; Schacter DL
    Soc Cogn Affect Neurosci; 2014 Dec; 9(12):1942-51. PubMed ID: 24493844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly and use of new task rules in fronto-parietal cortex.
    Dumontheil I; Thompson R; Duncan J
    J Cogn Neurosci; 2011 Jan; 23(1):168-82. PubMed ID: 20146600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction.
    Crittenden BM; Mitchell DJ; Duncan J
    J Neurosci; 2016 Jun; 36(23):6147-55. PubMed ID: 27277793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory coding in the multiple-demand regions: vibrotactile task information is coded in frontoparietal cortex.
    Woolgar A; Zopf R
    J Neurophysiol; 2017 Aug; 118(2):703-716. PubMed ID: 28404826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite modulation of brain functional networks implicated at low vs. high demand of attention and working memory.
    Xu J; Calhoun VD; Pearlson GD; Potenza MN
    PLoS One; 2014; 9(1):e87078. PubMed ID: 24498021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward Motivation Enhances Task Coding in Frontoparietal Cortex.
    Etzel JA; Cole MW; Zacks JM; Kay KN; Braver TS
    Cereb Cortex; 2016 Apr; 26(4):1647-59. PubMed ID: 25601237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch-Independent Task Representations in Frontal and Parietal Cortex.
    Loose LS; Wisniewski D; Rusconi M; Goschke T; Haynes JD
    J Neurosci; 2017 Aug; 37(33):8033-8042. PubMed ID: 28729441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network.
    Tschentscher N; Mitchell D; Duncan J
    J Neurosci; 2017 May; 37(18):4841-4847. PubMed ID: 28408412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused Representation of Successive Task Episodes in Frontal and Parietal Cortex.
    Kadohisa M; Watanabe K; Kusunoki M; Buckley MJ; Duncan J
    Cereb Cortex; 2020 Mar; 30(3):1779-1796. PubMed ID: 31690931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representational Organization of Novel Task Sets during Proactive Encoding.
    Palenciano AF; González-García C; Arco JE; Pessoa L; Ruz M
    J Neurosci; 2019 Oct; 39(42):8386-8397. PubMed ID: 31427394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective tuning of the blood oxygenation level-dependent response during simple target detection dissociates human frontoparietal subregions.
    Hampshire A; Duncan J; Owen AM
    J Neurosci; 2007 Jun; 27(23):6219-23. PubMed ID: 17553994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control.
    Woolgar A; Afshar S; Williams MA; Rich AN
    J Cogn Neurosci; 2015 Oct; 27(10):1895-911. PubMed ID: 26058604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.
    Jackson J; Rich AN; Williams MA; Woolgar A
    J Cogn Neurosci; 2017 Feb; 29(2):310-321. PubMed ID: 27626230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.