These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31274883)
1. Effect of device design on charge offset drift in Si/SiO Hu B; Ochoa ED; Sanchez D; Perron JK; Zimmerman NM; Stewart MD J Appl Phys; 2018; 124():. PubMed ID: 31274883 [TBL] [Abstract][Full Text] [Related]
2. Charge offset stability in Si single electron devices with Al gates. Zimmerman NM; Yang CH; Shyan Lai N; Han Lim W; Dzurak AS Nanotechnology; 2014 Oct; 25(40):405201. PubMed ID: 25213165 [TBL] [Abstract][Full Text] [Related]
4. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor. Moulick S; Alam R; Pal AN ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003 [TBL] [Abstract][Full Text] [Related]
5. Dangling Bonds as Possible Contributors to Charge Noise in Silicon and Silicon-Germanium Quantum Dot Qubits. Varley JB; Ray KG; Lordi V ACS Appl Mater Interfaces; 2023 Sep; 15(36):43111-43123. PubMed ID: 37651689 [TBL] [Abstract][Full Text] [Related]
6. Reduction of charge impurities in a silicon metal-oxide-semiconductor quantum dot qubit device patterned with nano-imprint lithography. Penthorn NE; Schoenfield JS; Rooney JD; Jiang H Nanotechnology; 2019 Nov; 30(46):465302. PubMed ID: 31426049 [TBL] [Abstract][Full Text] [Related]
7. Reduction of charge offset drift using plasma oxidized aluminum in SETs. Hong Y; Stein R; Stewart MD; Zimmerman NM; Pomeroy JM Sci Rep; 2020 Oct; 10(1):18216. PubMed ID: 33106545 [TBL] [Abstract][Full Text] [Related]
8. The periodicity effect on the charge storage characteristic of multistacked nc-Si floating gate. Ma Z; Liu G; Jiang X; Xia G; Yan M; Li W; Chen K; Xu L; Xu J; Feng D J Nanosci Nanotechnol; 2013 Feb; 13(2):997-1000. PubMed ID: 23646558 [TBL] [Abstract][Full Text] [Related]
9. Double gate operation of metal nanodot array based single electron device. Gyakushi T; Amano I; Tsurumaki-Fukuchi A; Arita M; Takahashi Y Sci Rep; 2022 Jul; 12(1):11446. PubMed ID: 35794232 [TBL] [Abstract][Full Text] [Related]
10. Fast Charge Sensing of Si/SiGe Quantum Dots via a High-Frequency Accumulation Gate. Volk C; Chatterjee A; Ansaloni F; Marcus CM; Kuemmeth F Nano Lett; 2019 Aug; 19(8):5628-5633. PubMed ID: 31339321 [TBL] [Abstract][Full Text] [Related]
11. MBE-grown Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device. Manna S; Aluguri R; Katiyar A; Das S; Laha A; Osten HJ; Ray SK Nanotechnology; 2013 Dec; 24(50):505709. PubMed ID: 24284782 [TBL] [Abstract][Full Text] [Related]
13. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet. Kawakami E; Jullien T; Scarlino P; Ward DR; Savage DE; Lagally MG; Dobrovitski VV; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LM Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11738-11743. PubMed ID: 27698123 [TBL] [Abstract][Full Text] [Related]
14. Issues of nanoelectronics: a possible roadmap. Wang KL J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252 [TBL] [Abstract][Full Text] [Related]
15. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Simmons CB; Thalakulam M; Rosemeyer BM; Van Bael BJ; Sackmann EK; Savage DE; Lagally MG; Joynt R; Friesen M; Coppersmith SN; Eriksson MA Nano Lett; 2009 Sep; 9(9):3234-8. PubMed ID: 19645459 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium probing of two-level charge fluctuators using the step response of a single-electron transistor. Pourkabirian A; Gustafsson MV; Johansson G; Clarke J; Delsing P Phys Rev Lett; 2014 Dec; 113(25):256801. PubMed ID: 25554902 [TBL] [Abstract][Full Text] [Related]
17. Scanned Single-Electron Probe inside a Silicon Electronic Device. Ng KSH; Voisin B; Johnson BC; McCallum JC; Salfi J; Rogge S ACS Nano; 2020 Aug; 14(8):9449-9455. PubMed ID: 32510926 [TBL] [Abstract][Full Text] [Related]
18. Reducing charge noise in quantum dots by using thin silicon quantum wells. Paquelet Wuetz B; Degli Esposti D; Zwerver AJ; Amitonov SV; Botifoll M; Arbiol J; Sammak A; Vandersypen LMK; Russ M; Scappucci G Nat Commun; 2023 Mar; 14(1):1385. PubMed ID: 36914637 [TBL] [Abstract][Full Text] [Related]
20. Exploring the behaviors of electrode-driven Si quantum dot systems: from charge control to qubit operations. Kang JH; Ryu J; Ryu H Nanoscale; 2021 Jan; 13(1):332-339. PubMed ID: 33346301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]