These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31274957)

  • 1. Role of Surface Reduction in the Formation of Traps in
    du Fossé I; Ten Brinck S; Infante I; Houtepen AJ
    Chem Mater; 2019 Jun; 31(12):4575-4583. PubMed ID: 31274957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Formation of Metal-Based Traps in Photoexcited Colloidal Quantum Dots and Their Relevance for Photoluminescence.
    du Fossé I; Boehme SC; Infante I; Houtepen AJ
    Chem Mater; 2021 May; 33(9):3349-3358. PubMed ID: 34054218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals.
    van der Stam W; du Fossé I; Grimaldi G; Monchen JOV; Kirkwood N; Houtepen AJ
    Chem Mater; 2018 Nov; 30(21):8052-8061. PubMed ID: 30487664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids.
    Nag A; Chung DS; Dolzhnikov DS; Dimitrijevic NM; Chattopadhyay S; Shibata T; Talapin DV
    J Am Chem Soc; 2012 Aug; 134(33):13604-15. PubMed ID: 22812398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantized Electronic Doping towards Atomically Controlled "Charge-Engineered" Semiconductor Nanocrystals.
    Capitani C; Pinchetti V; Gariano G; Santiago-González B; Santambrogio C; Campione M; Prato M; Brescia R; Camellini A; Bellato F; Carulli F; Anand A; Zavelani-Rossi M; Meinardi F; Crooker SA; Brovelli S
    Nano Lett; 2019 Feb; 19(2):1307-1317. PubMed ID: 30663314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
    Choi YC; Lee J; Ng JJ; Kagan CR
    Acc Chem Res; 2023 Jul; 56(13):1791-1802. PubMed ID: 37342079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.
    Xia F; Shao Z; He Y; Wang R; Wu X; Jiang T; Duhm S; Zhao J; Lee ST; Jie J
    ACS Nano; 2016 Nov; 10(11):10283-10293. PubMed ID: 27798826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Band-Edge Potentials and Charge Storage in Colloidal Tin-Doped Indium Oxide (ITO) Nanocrystals.
    Araujo JJ; Brozek CK; Liu H; Merkulova A; Li X; Gamelin DR
    ACS Nano; 2021 Sep; 15(9):14116-14124. PubMed ID: 34387483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Bandgap and Surface Structure of CsPbCl
    Zhang Y; Cheng X; Tu D; Gong Z; Li R; Yang Y; Zheng W; Xu J; Deng S; Chen X
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9693-9698. PubMed ID: 33543555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustable Electrochemiluminescence from Highly Passivated CdTe/CdS Nanocrystals by Simple Surface Decoration with Counterions.
    He Y; Hou S; Yang L; Zhang F; Zou G
    Chemistry; 2018 Jul; 24(38):9592-9597. PubMed ID: 29667254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Potassium- and Rubidium-Doped Formamidinium Lead Bromide Nanocrystals for Surface Defect Passivation and Improved Photoluminescence Stability.
    Tabassum M; Zia Q; Ye H; Neal WG; Aslam S; Zhang J; Su L
    ACS Appl Electron Mater; 2024 Jan; 6(1):550-558. PubMed ID: 38283377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals.
    Hughes KE; Stein JL; Friedfeld MR; Cossairt BM; Gamelin DR
    ACS Nano; 2019 Dec; 13(12):14198-14207. PubMed ID: 31730352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor Nanocrystals: Unveiling the Chemistry behind Different Facets.
    Kim M; Choi M; Choi S; Jeong S
    Acc Chem Res; 2023 Jul; 56(13):1756-1765. PubMed ID: 37352443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation.
    Kirkwood N; Monchen JOV; Crisp RW; Grimaldi G; Bergstein HAC; du Fossé I; van der Stam W; Infante I; Houtepen AJ
    J Am Chem Soc; 2018 Nov; 140(46):15712-15723. PubMed ID: 30375226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoluminescence brightening via electrochemical trap passivation in ZnSe and Mn(2+)-doped ZnSe quantum dots.
    Weaver AL; Gamelin DR
    J Am Chem Soc; 2012 Apr; 134(15):6819-25. PubMed ID: 22417458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bandgap atomistic calculations on hydrogen-passivated GeSi nanocrystals.
    Cojocaru O; Lepadatu AM; Nemnes GA; Stoica T; Ciurea ML
    Sci Rep; 2021 Jun; 11(1):13582. PubMed ID: 34193909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.
    Bose R; Bera A; Parida MR; Adhikari A; Shaheen BS; Alarousu E; Sun J; Wu T; Bakr OM; Mohammed OF
    Nano Lett; 2016 Jul; 16(7):4417-23. PubMed ID: 27228321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.