BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31275331)

  • 1. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants.
    Tai L; Li BB; Nie XM; Zhang PP; Hu CH; Zhang L; Liu WT; Li WQ; Chen KM
    Front Plant Sci; 2019; 10():681. PubMed ID: 31275331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular properties and regulation of NAD
    Oka SI; Titus AS; Zablocki D; Sadoshima J
    Redox Biol; 2023 Feb; 59():102561. PubMed ID: 36512915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms.
    Love NR; Pollak N; Dölle C; Niere M; Chen Y; Oliveri P; Amaya E; Patel S; Ziegler M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1386-91. PubMed ID: 25605906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform.
    Turner WL; Waller JC; Vanderbeld B; Snedden WA
    Plant Physiol; 2004 Jul; 135(3):1243-55. PubMed ID: 15247403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD - new roles in signalling and gene regulation in plants.
    Hunt L; Lerner F; Ziegler M
    New Phytol; 2004 Jul; 163(1):31-44. PubMed ID: 33873776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development.
    Li BB; Wang X; Tai L; Ma TT; Shalmani A; Liu WT; Li WQ; Chen KM
    Front Plant Sci; 2018; 9():379. PubMed ID: 29662499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP.
    Lee HC
    Physiol Rev; 1997 Oct; 77(4):1133-64. PubMed ID: 9354813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate.
    Graeff RM; Franco L; De Flora A; Lee HC
    J Biol Chem; 1998 Jan; 273(1):118-25. PubMed ID: 9417055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mitochondrial NAD/NADH kinase governs fungal virulence through an oxidative stress response and arginine biosynthesis in Fusarium graminearum.
    Park J; Lee N; Kim H; Kim D; Shin S; Choi S; Choi GJ; Son H
    Microbiol Res; 2024 Jun; 283():127692. PubMed ID: 38508088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells.
    Gray JP; Alavian KN; Jonas EA; Heart EA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(2):E191-9. PubMed ID: 22550069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications.
    Petrelli R; Felczak K; Cappellacci L
    Curr Med Chem; 2011; 18(13):1973-92. PubMed ID: 21517775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling.
    Lee HC
    Recent Prog Horm Res; 1996; 51():355-88; discussion 389. PubMed ID: 8701086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress.
    Grose JH; Joss L; Velick SF; Roth JR
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7601-6. PubMed ID: 16682646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD kinase promotes
    Leseigneur C; Boucontet L; Duchateau M; Pizarro-Cerda J; Matondo M; Colucci-Guyon E; Dussurget O
    Elife; 2022 Jun; 11():. PubMed ID: 35723663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MNADK, a Long-Awaited Human Mitochondrion-Localized NAD Kinase.
    Zhang R
    J Cell Physiol; 2015 Aug; 230(8):1697-701. PubMed ID: 25641397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1.
    Ochiai A; Mori S; Kawai S; Murata K
    Protein Expr Purif; 2004 Jul; 36(1):124-30. PubMed ID: 15177293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD
    Willett E; Jiang V; Koder RL; Banta S
    Biochemistry; 2022 Sep; 61(17):1862-1873. PubMed ID: 35984481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of the NADK gene family in plants.
    Li WY; Wang X; Li R; Li WQ; Chen KM
    PLoS One; 2014; 9(6):e101051. PubMed ID: 24968225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis.
    Waller JC; Dhanoa PK; Schumann U; Mullen RT; Snedden WA
    Planta; 2010 Jan; 231(2):305-17. PubMed ID: 19921251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.
    Xu M; Zhang Y; Xia M; Li XX; Ritter JK; Zhang F; Li PL
    Free Radic Biol Med; 2012 Jan; 52(2):357-65. PubMed ID: 22100343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.