These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31275457)

  • 1. Gigacycle fatigue in high strength steels.
    Furuya Y; Hirukawa H; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):643-656. PubMed ID: 31275457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalogue of NIMS fatigue data sheets.
    Furuya Y; Nishikawa H; Hirukawa H; Nagashima N; Takeuchi E
    Sci Technol Adv Mater; 2019; 20(1):1055-1072. PubMed ID: 31762842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic Fatigue Testing of Structural Steel S275JR+AR with Insights into Corrosion, Mean Stress and Frequency Effects.
    Gorash Y; Comlekci T; Styger G; Kelly J; Brownlie F; Milne L
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels.
    Mueller I; Rementeria R; Caballero FG; Kuntz M; Sourmail T; Kerscher E
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Fatigue Behaviour and Failure Mechanisms of 52100 Steel Coated with WIP-C1 (Ni/CrC) by Cold Spray.
    Goanta V; Munteanu C; Müftü S; Istrate B; Schwartz P; Boese S; Ferguson G; Morăraș CI
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Crack Propagation of 51CrV4 Steels for Leaf Spring Suspensions of Railway Freight Wagons.
    Gomes VMG; Lesiuk G; Correia JAFO; de Jesus AMP
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Fatigue Crack Growth Rate Based on Entropy Generation.
    Idris R; Abdullah S; Thamburaja P; Omar MZ
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data.
    Fitzka M; Schönbauer BM; Rhein RK; Sanaei N; Zekriardehani S; Tekalur SA; Carroll JW; Mayer H
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength gradient enhances fatigue resistance of steels.
    Ma Z; Liu J; Wang G; Wang H; Wei Y; Gao H
    Sci Rep; 2016 Feb; 6():22156. PubMed ID: 26907708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Ultrasonic Assisted Surface Rolling Process on the Fatigue Crack Initiation Position Distribution and Fatigue Life of 51CrV4 Spring Steel.
    Xu C; Liang Y; Yang M; Yu J; Peng X
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interior Fracture Mechanism Analysis and Fatigue Life Prediction of Surface-Hardened Gear Steel under Axial Loading.
    Li W; Deng H; Liu P
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Fatigue Performance in Gradient Structural Steels by Manipulating the Grain Size Gradient Rate.
    Pan M; Chen X; He M; Kong Y; Du Y; Hartmaier A; Zheng X; Liu Y
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels.
    Calvo-García E; Valverde-Pérez S; Riveiro A; Álvarez D; Román M; Magdalena C; Badaoui A; Moreira P; Comesaña R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence.
    Matsunaga H; Takakuwa O; Yamabe J; Matsuoka S
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.
    Amaro RL; Rustagi N; Drexler ES; Slifka AJ
    J Res Natl Inst Stand Technol; 2014; 119():6-14. PubMed ID: 26601024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.