These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31275457)

  • 21. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.
    Patankar R
    Risk Anal; 2003 Oct; 23(5):929-36. PubMed ID: 12969408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.
    Nanninga N; Slifka A; Levy Y; White C
    J Res Natl Inst Stand Technol; 2010; 115(6):437-52. PubMed ID: 27134796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy.
    Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.
    Antunes RA; de Oliveira MC
    Acta Biomater; 2012 Mar; 8(3):937-62. PubMed ID: 21951920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size.
    Wang Q; Zhang W; Jiang S
    Materials (Basel); 2015 Oct; 8(10):7145-7160. PubMed ID: 28793625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the effect of pre-strain and pre-fatigue on the monotonic behaviour of ultra-high strength steels.
    Cockings HL; Cockings BJ; Perkins KM
    Heliyon; 2020 Jul; 6(7):e04440. PubMed ID: 32695913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.
    Chen J; Browne M; Taylor M; Gregson PJ
    Comput Methods Programs Biomed; 2004 Mar; 73(3):249-56. PubMed ID: 14980406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses.
    Launey ME; Hofmann DC; Johnson WL; Ritchie RO
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):4986-91. PubMed ID: 19289820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Fatigue Behaviors of a Medium-Carbon Pearlitic Wheel-Steel with Elongated Sulfides in High-Cycle and Very-High-Cycle Regimes.
    Liu L; Ma Y; Liu S; Wang S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications.
    Li F; Li J; Kou H; Zhou L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():485-488. PubMed ID: 26706555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.
    Heibel S; Dettinger T; Nester W; Clausmeyer T; Tekkaya AE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29747417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb.
    Cheng Z; Cao X; Xu X; Shen Q; Yu T; Jin J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications.
    Li F; Li J; Huang T; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2017 Jan; 65():814-823. PubMed ID: 27788474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.