These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31276081)

  • 21. Methodologies for evaluating exoskeletons with industrial applications.
    Hoffmann N; Prokop G; Weidner R
    Ergonomics; 2022 Feb; 65(2):276-295. PubMed ID: 34415823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. User satisfaction with lower limb wearable robotic exoskeletons.
    Poritz JMP; Taylor HB; Francisco G; Chang SH
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789
    [No Abstract]   [Full Text] [Related]  

  • 23. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke.
    Bae J; Awad LN; Long A; O'Donnell K; Hendron K; Holt KG; Ellis TD; Walsh CJ
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study.
    Nelson AJ; Hall PT; Saul KR; Crouch DL
    J Appl Biomech; 2020 Apr; 36(2):59-67. PubMed ID: 31968306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach.
    Onose G; Cârdei V; Crăciunoiu ŞT; Avramescu V; Opriş I; Lebedev MA; Constantinescu MV
    Front Neurosci; 2016; 10():343. PubMed ID: 27746711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Association, expectations and barriers of the use of exoskeletons in small and medium-sized enterprises].
    Hoffmann H; Pitz I; Adomssent B; Russmann C
    Zentralbl Arbeitsmed Arbeitsschutz Ergon; 2022; 72(2):68-77. PubMed ID: 35068706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation and Test Methods of Industrial Exoskeletons In Vitro, In Vivo, and In Silico: A Critical Review.
    Zheng L; Lowe B; Hawke AL; Wu JZ
    Crit Rev Biomed Eng; 2021; 49(4):1-13. PubMed ID: 35695600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Academic Review and Perspectives on Robotic Exoskeletons.
    Bao G; Pan L; Fang H; Wu X; Yu H; Cai S; Yu B; Wan Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2294-2304. PubMed ID: 31567097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit.
    Xiloyannis M; Annese E; Canesi M; Kodiyan A; Bicchi A; Micera S; Ajoudani A; Masia L
    Front Neurorobot; 2019; 13():39. PubMed ID: 31275129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotic exoskeletons: The current pros and cons.
    Gorgey AS
    World J Orthop; 2018 Sep; 9(9):112-119. PubMed ID: 30254967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current global standards for chemical protective clothing: how to choose the right protection for the right job?
    VAN Wely E
    Ind Health; 2017 Dec; 55(6):485-499. PubMed ID: 29046493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Nandy P; Zhu C; Young M; Wood SC; Lucas AD
    Biomed Instrum Technol; 2020; 54(2):102-109. PubMed ID: 32186903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk management and regulations for lower limb medical exoskeletons: a review.
    He Y; Eguren D; Luu TP; Contreras-Vidal JL
    Med Devices (Auckl); 2017; 10():89-107. PubMed ID: 28533700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lighter and Simpler Design Paradigm for Widespread Use of Ankle Exosuits Based on Bio-Inspired Patterns.
    Park S; Moon J; Park JI; Ryu J; Nam K; Yang J; Lee G
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.