These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31276315)

  • 1. 3-photon fluorescence imaging of sulforhodamine B-labeled elastic fibers in the mouse skin in vivo.
    He C; Gan M; Deng X; Liu H; Qiu P; Wang K
    J Biophotonics; 2019 Nov; 12(11):e201900185. PubMed ID: 31276315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging of elastic fibers using sulforhodamine B.
    Ricard C; Vial JC; Douady J; van der Sanden B
    J Biomed Opt; 2007; 12(6):064017. PubMed ID: 18163833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing astrocytes in the deep mouse brain in vivo.
    Liu H; Wang J; Zhuang Z; He J; Wen W; Qiu P; Wang K
    J Biophotonics; 2019 Jul; 12(7):e201800420. PubMed ID: 30938095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid cubic phases in topical drug delivery: visualization of skin distribution using two-photon microscopy.
    Bender J; Simonsson C; Smedh M; Engström S; Ericson MB
    J Control Release; 2008 Aug; 129(3):163-9. PubMed ID: 18538886
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Tong S; Zhong J; Chen X; Deng X; Huang J; Zhang Y; Qin M; Li Z; Cheng H; Zhang W; Zheng L; Xie W; Qiu P; Wang K
    ACS Nano; 2023 Feb; 17(4):3686-3695. PubMed ID: 36799427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo staining of neocortical astrocytes via the cerebral microcirculation using sulforhodamine B.
    Vérant P; Ricard C; Serduc R; Vial JC; van der Sanden B
    J Biomed Opt; 2008; 13(6):064028. PubMed ID: 19123674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers.
    Chen J; Zhuo S; Luo T; Jiang X; Zhao J
    Scanning; 2006; 28(6):319-26. PubMed ID: 17181133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation.
    Chen J; Lee A; Zhao J; Wang H; Lui H; McLean DI; Zeng H
    Skin Res Technol; 2009 Nov; 15(4):418-26. PubMed ID: 19832952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-photon microscopy of myelin in mouse digital skin excited at the 1700-nm window.
    He C; Deng X; Pan Y; Tong S; Kang J; Li J; Qiu P; Wang K
    J Biophotonics; 2020 Dec; 13(12):e202000321. PubMed ID: 32969170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and quantification of skin barrier perturbation induced by surfactant-humectant systems using two-photon fluorescence microscopy.
    Ghosh S; Kim D; So P; Blankschtein D
    J Cosmet Sci; 2008; 59(4):263-89. PubMed ID: 18818848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton microscopic imaging of in vivo hair mouse skin based on two-photon excited fluorescence and second harmonic generation.
    Jiang X; Zhuo S; Xu R; Chen J
    Scanning; 2012; 34(3):170-3. PubMed ID: 21932328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window.
    Deng X; Ma X; Zhang W; Qin M; Xie W; Qiu P; Yin J; Wang K
    Anal Chim Acta; 2023 May; 1255():341118. PubMed ID: 37032053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.
    Cui JZ; Tehrani AY; Jett KA; Bernatchez P; van Breemen C; Esfandiarei M
    J Struct Biol; 2014 Sep; 187(3):242-253. PubMed ID: 25086405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex and in vivo characterization of the wavelength-dependent 3-photon action cross-sections of red fluorescent proteins covering the 1700-nm window.
    Liu H; Wang J; Peng X; Zhuang Z; Qiu P; Wang K
    J Biophotonics; 2018 Jul; 11(7):e201700351. PubMed ID: 29603649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-phase-modulated femtosecond laser source at 1603 nm and its application to deep-brain 3-photon microscopy in vivo.
    Chen X; Cheng H; Deng X; Tong S; Li J; Qiu P; Wang K
    J Biophotonics; 2021 Mar; 14(3):e202000349. PubMed ID: 33179837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer.
    Kushner J; Kim D; So PT; Blankschtein D; Langer RS
    J Invest Dermatol; 2007 Dec; 127(12):2832-46. PubMed ID: 17554365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphoton microscopic imaging of rabbit dorsal skin.
    Zhu X; Xu Y; Hong Z; Chen J; Zhuo S; Chen J
    Scanning; 2015; 37(2):95-100. PubMed ID: 25521496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections.
    de Carvalho HF; Taboga SR
    Histochem Cell Biol; 1996 Dec; 106(6):587-92. PubMed ID: 8985747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion.
    Wang K; Pan Y; Tong S; Chen X; Lu Y; Qiu P
    J Biophotonics; 2021 Oct; 14(10):e202100076. PubMed ID: 34160142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots.
    Liu H; Deng X; Tong S; He C; Cheng H; Zhuang Z; Gan M; Li J; Xie W; Qiu P; Wang K
    Nano Lett; 2019 Aug; 19(8):5260-5265. PubMed ID: 31268725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.