These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31276400)

  • 61. Tankyrase as a Novel Molecular Target in Cancer and Fibrotic Diseases.
    Lakshmi TV; Bale S; Khurana A; Godugu C
    Curr Drug Targets; 2017; 18(10):1214-1224. PubMed ID: 27425647
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rationalizing protein-ligand interactions for PTP1B inhibitors using computational methods.
    Ajmani S; Karanam S; Kulkarni SA
    Chem Biol Drug Des; 2009 Dec; 74(6):582-95. PubMed ID: 19824894
    [TBL] [Abstract][Full Text] [Related]  

  • 64. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure-efficiency relationship of [1,2,4]triazol-3-ylamines as novel nicotinamide isosteres that inhibit tankyrases.
    Shultz MD; Majumdar D; Chin DN; Fortin PD; Feng Y; Gould T; Kirby CA; Stams T; Waters NJ; Shao W
    J Med Chem; 2013 Sep; 56(17):7049-59. PubMed ID: 23879431
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fragment-based ligand design of novel potent inhibitors of tankyrases.
    Larsson EA; Jansson A; Ng FM; Then SW; Panicker R; Liu B; Sangthongpitag K; Pendharkar V; Tai SJ; Hill J; Dan C; Ho SY; Cheong WW; Poulsen A; Blanchard S; Lin GR; Alam J; Keller TH; Nordlund P
    J Med Chem; 2013 Jun; 56(11):4497-508. PubMed ID: 23672613
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Use of the Multilayer Fragment Molecular Orbital Method to Predict the Rank Order of Protein-Ligand Binding Affinities: A Case Study Using Tankyrase 2 Inhibitors.
    Okimoto N; Otsuka T; Hirano Y; Taiji M
    ACS Omega; 2018 Apr; 3(4):4475-4485. PubMed ID: 31458673
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The telomeric PARP, tankyrases, as targets for cancer therapy.
    Seimiya H
    Br J Cancer; 2006 Feb; 94(3):341-5. PubMed ID: 16421589
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Comparison Study of Point-Process Filter and Deep Learning Performance in Estimating Rat Position Using an Ensemble of Place Cells.
    Rezaei MR; Gillespie AK; Guidera JA; Nazari B; Sadri S; Frank LM; Eden UT; Yousefi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4732-4735. PubMed ID: 30441406
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development and structural analysis of adenosine site binding tankyrase inhibitors.
    Haikarainen T; Waaler J; Ignatev A; Nkizinkiko Y; Venkannagari H; Obaji E; Krauss S; Lehtiö L
    Bioorg Med Chem Lett; 2016 Jan; 26(2):328-333. PubMed ID: 26706174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2.
    Mukai T; Fujita S; Morita Y
    Cells; 2019 Feb; 8(2):. PubMed ID: 30813388
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors.
    Hu Y; Zhou L; Zhu X; Dai D; Bao Y; Qiu Y
    J Biomol Struct Dyn; 2019 Jul; 37(10):2703-2715. PubMed ID: 30052133
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional characterization of the poly(ADP-ribose) polymerase activity of tankyrase 1, a potential regulator of telomere length.
    Rippmann JF; Damm K; Schnapp A
    J Mol Biol; 2002 Oct; 323(2):217-24. PubMed ID: 12381316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluating Deep Learning models for predicting ALK-5 inhibition.
    Espinoza GZ; Angelo RM; Oliveira PR; Honorio KM
    PLoS One; 2021; 16(1):e0246126. PubMed ID: 33508008
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase).
    Sbodio JI; Lodish HF; Chi NW
    Biochem J; 2002 Feb; 361(Pt 3):451-9. PubMed ID: 11802774
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Convolutional and recurrent neural network for human activity recognition: Application on American sign language.
    Hernandez V; Suzuki T; Venture G
    PLoS One; 2020; 15(2):e0228869. PubMed ID: 32074124
    [TBL] [Abstract][Full Text] [Related]  

  • 78. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening.
    Virtanen SI; Niinivehmas SP; Pentikäinen OT
    J Mol Graph Model; 2015 Nov; 62():303-318. PubMed ID: 26550792
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Discovery and Optimization of 2-Arylquinazolin-4-ones into a Potent and Selective Tankyrase Inhibitor Modulating Wnt Pathway Activity.
    Buchstaller HP; Anlauf U; Dorsch D; Kuhn D; Lehmann M; Leuthner B; Musil D; Radtki D; Ritzert C; Rohdich F; Schneider R; Esdar C
    J Med Chem; 2019 Sep; 62(17):7897-7909. PubMed ID: 31381853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.