These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31276569)
1. Ventricle-specific epicardial pressures as a means to optimize direct cardiac compression for circulatory support: A pilot study. Han J; Kubala M; Aranda-Michel E; Trumble DR PLoS One; 2019; 14(7):e0219162. PubMed ID: 31276569 [TBL] [Abstract][Full Text] [Related]
2. Left ventricular simulation of cardiac compression: Hemodynamics and regional mechanics. Aranda-Michel E; Waldman LK; Trumble DR PLoS One; 2019; 14(10):e0224475. PubMed ID: 31671155 [TBL] [Abstract][Full Text] [Related]
3. [Study on direct ventricular assist loading mode based on a finite element method]. Li C; Jiang X; Zhang S; Wang T; Liu X; Zhang Y; Huang G; Zhang X; Xu J; Jin Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):782-789. PubMed ID: 39218605 [TBL] [Abstract][Full Text] [Related]
4. Right heart function during left heart assist and the effects of volume loading in a canine preparation. Farrar DJ; Compton PG; Dajee H; Fonger JD; Hill JD Circulation; 1984 Oct; 70(4):708-16. PubMed ID: 6478570 [TBL] [Abstract][Full Text] [Related]
5. Direct Cardiac Compression Devices to Augment Heart Biomechanics and Function. Bonnemain J; Del Nido PJ; Roche ET Annu Rev Biomed Eng; 2022 Jun; 24():137-156. PubMed ID: 35395165 [TBL] [Abstract][Full Text] [Related]
6. A novel intrapericardial pulsatile device for individualized, biventricular circulatory support without direct blood contact. Schueler S; Bowles CT; Hinkel R; Wohlfarth R; Schmid MR; Wildhirt S; Stock U; ; Fischer J; Reiser J; Kamla C; Tzekos K; Smail H; de Vaal MH J Thorac Cardiovasc Surg; 2023 Oct; 166(4):1119-1129.e1. PubMed ID: 35379474 [TBL] [Abstract][Full Text] [Related]
7. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Barbone A; Holmes JW; Heerdt PM; The' AH; Naka Y; Joshi N; Daines M; Marks AR; Oz MC; Burkhoff D Circulation; 2001 Aug; 104(6):670-5. PubMed ID: 11489773 [TBL] [Abstract][Full Text] [Related]
8. Cardiac function after acute support with direct mechanical ventricular actuation in chronic heart failure. McConnell PI; Anstadt MP; Del Rio CL; Preston TJ; Ueyama Y; Youngblood BL ASAIO J; 2014; 60(6):701-6. PubMed ID: 25238499 [TBL] [Abstract][Full Text] [Related]
9. Hemodynamic effects of direct biventricular compression studied in isovolumic and ejecting isolated canine hearts. Artrip JH; Wang J; Leventhal AR; Tsitlik JE; Levin HR; Burkhoff D Circulation; 1999 Apr; 99(16):2177-84. PubMed ID: 10217660 [TBL] [Abstract][Full Text] [Related]
10. Comparison of right ventricular and biventricular circulatory support in a porcine model of right heart failure. Farrar DJ; Chow E; Wood J; Hill JD ASAIO Trans; 1990; 36(3):M522-5. PubMed ID: 2252740 [TBL] [Abstract][Full Text] [Related]
11. Physiological and hemodynamic evaluation of nonuniform direct cardiac compression. Artrip JH; Yi GH; Levin HR; Burkhoff D; Wang J Circulation; 1999 Nov; 100(19 Suppl):II236-43. PubMed ID: 10567310 [TBL] [Abstract][Full Text] [Related]
12. Direct epicardial assist device using artificial rubber muscle in a swine model of pediatric dilated cardiomyopathy. Saito Y; Suzuki Y; Kondo N; Kowatari R; Daitoku K; Minakawa M; Fukuda I Int J Artif Organs; 2015 Nov; 38(11):588-94. PubMed ID: 26659480 [TBL] [Abstract][Full Text] [Related]
13. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis. Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783 [TBL] [Abstract][Full Text] [Related]
14. Effects of an intra-ventricular assist device on the stroke volume of failing ventricle: Analysis of a mock circulatory system. Zhu S; Luo L; Yang B; Ni K; Zhou Q; Li X; Wang X Technol Health Care; 2018; 26(S1):471-479. PubMed ID: 29758970 [TBL] [Abstract][Full Text] [Related]
15. Load-independent analysis of a pulsatile right ventricular assist device. Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467 [TBL] [Abstract][Full Text] [Related]
16. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169 [TBL] [Abstract][Full Text] [Related]
17. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps. Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664 [TBL] [Abstract][Full Text] [Related]
18. The effect of heart failure and left ventricular assist device treatment on right ventricular mechanics: a computational study. Park JIK; Heikhmakhtiar AK; Kim CH; Kim YS; Choi SW; Song KS; Lim KM Biomed Eng Online; 2018 May; 17(1):62. PubMed ID: 29784052 [TBL] [Abstract][Full Text] [Related]
19. Cardiac tamponade: a comparison of right versus left heart compression. Fowler NO; Gabel M; Buncher CR J Am Coll Cardiol; 1988 Jul; 12(1):187-93. PubMed ID: 3379203 [TBL] [Abstract][Full Text] [Related]
20. Finite state machine implementation for left ventricle modeling and control. King JM; Bergeron CA; Taylor CE Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]