BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31276620)

  • 1. Molecular Computations of Preferential Interaction Coefficients of IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose and the Impact of These Excipients on Aggregation and Viscosity.
    Cloutier T; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2019 Aug; 16(8):3657-3664. PubMed ID: 31276620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Role of Preferential Exclusion of Sugars and Polyols from Native State IgG1 Monoclonal Antibodies and its Effect on Aggregation and Reversible Self-Association.
    Sudrik CM; Cloutier T; Mody N; Sathish HA; Trout BL
    Pharm Res; 2019 May; 36(8):109. PubMed ID: 31127417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design.
    Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach.
    Jo S; Xu A; Curtis JE; Somani S; MacKerell AD
    Mol Pharm; 2020 Nov; 17(11):4323-4333. PubMed ID: 32965126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity.
    Cloutier TK; Sudrik C; Mody N; Hasige SA; Trout BL
    MAbs; 2020; 12(1):1816312. PubMed ID: 32938318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral Effects of Excipients on Protein Stability: Preferential Interaction Type of Excipient and Surface Aromatic Hydrophobicity of Protein.
    Wen L; Zheng X; Wang X; Lan H; Yin Z
    Pharm Res; 2017 Jul; 34(7):1378-1390. PubMed ID: 28401430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of lyophilized sucrose formulations of an IgG1: subvisible particle formation.
    Davis JM; Zhang N; Payne RW; Murphy BM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC
    Pharm Dev Technol; 2013; 18(4):883-96. PubMed ID: 22813478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential interactions of trehalose, L-arginine.HCl and sodium chloride with therapeutically relevant IgG1 monoclonal antibodies.
    Sudrik C; Cloutier T; Pham P; Samra HS; Trout BL
    MAbs; 2017 Oct; 9(7):1155-1168. PubMed ID: 28758834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.
    Barnett GV; Razinkov VI; Kerwin BA; Blake S; Qi W; Curtis RA; Roberts CJ
    J Phys Chem B; 2016 Apr; 120(13):3318-30. PubMed ID: 27007711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Nov; 107(11):2748-2754. PubMed ID: 30055225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix?
    Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ
    J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans.
    Li J; Wang H; Wang L; Yu D; Zhang X
    Eur J Pharm Sci; 2024 Jan; 192():106625. PubMed ID: 37918545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polyol sugars on the stabilization of monoclonal antibodies.
    Nicoud L; Cohrs N; Arosio P; Norrant E; Morbidelli M
    Biophys Chem; 2015 Feb; 197():40-6. PubMed ID: 25645712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.
    Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of local mobility in aggregation of beta-galactosidase lyophilized with trehalose, sucrose or stachyose.
    Yoshioka S; Miyazaki T; Aso Y; Kawanishi T
    Pharm Res; 2007 Sep; 24(9):1660-7. PubMed ID: 17404806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze/thaw of IGG solutions.
    Horn J; Jena S; Aksan A; Friess W
    Eur J Pharm Biopharm; 2019 Jan; 134():185-189. PubMed ID: 30529434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Preservation of Lyophilized Human Growth Hormone Activity: how Do Buffers and Sugars Interact?
    Arsiccio A; Pisano R
    Pharm Res; 2018 Apr; 35(7):131. PubMed ID: 29700627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Histidine and Sucrose on the Biophysical Properties of a Monoclonal Antibody.
    Baek Y; Singh N; Arunkumar A; Zydney AL
    Pharm Res; 2017 Mar; 34(3):629-639. PubMed ID: 28035628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.
    Garidel P; Pevestorf B; Bahrenburg S
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.