These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31276620)

  • 41. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trehalose or Sucrose: Which of the Two Should be Used for Stabilizing Proteins in the Solid State? A Dilemma Investigated by In Situ Micro-Raman and Dielectric Relaxation Spectroscopies During and After Freeze-Drying.
    Starciuc T; Malfait B; Danede F; Paccou L; Guinet Y; Correia NT; Hedoux A
    J Pharm Sci; 2020 Jan; 109(1):496-504. PubMed ID: 31678247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients.
    Banks DD; Cordia JF
    Mol Pharm; 2021 Mar; 18(3):1285-1292. PubMed ID: 33555888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability (I): stability of a monoclonal antibody.
    Abdul-Fattah AM; Truong-Le V; Yee L; Nguyen L; Kalonia DS; Cicerone MT; Pikal MJ
    J Pharm Sci; 2007 Aug; 96(8):1983-2008. PubMed ID: 17286290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quality by design: impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody.
    Awotwe-Otoo D; Agarabi C; Wu GK; Casey E; Read E; Lute S; Brorson KA; Khan MA; Shah RB
    Int J Pharm; 2012 Nov; 438(1-2):167-75. PubMed ID: 22944306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1.
    Hu Y; Arora J; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2020 Jan; 109(1):340-352. PubMed ID: 31201906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis.
    He F; Woods CE; Trilisky E; Bower KM; Litowski JR; Kerwin BA; Becker GW; Narhi LO; Razinkov VI
    J Pharm Sci; 2011 Apr; 100(4):1330-40. PubMed ID: 24081468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of a mixture DOE for the prediction of formulation critical temperatures during lyophilisation process optimisation.
    Gervasi V; Cullen S; McCoy T; Crean A; Vucen S
    Int J Pharm; 2019 Dec; 572():118807. PubMed ID: 31678526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A critical evaluation of Tm(FTIR) measurements of high-concentration IgG1 antibody formulations as a formulation development tool.
    Matheus S; Mahler HC; Friess W
    Pharm Res; 2006 Jul; 23(7):1617-27. PubMed ID: 16783474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does controlled nucleation impact the properties and stability of lyophilized monoclonal antibody formulations?
    Vollrath I; Friess W; Freitag A; Hawe A; Winter G
    Eur J Pharm Biopharm; 2018 Aug; 129():134-144. PubMed ID: 29800618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stabilization of a recombinant human epidermal growth factor parenteral formulation through freeze-drying.
    Santana H; Sotolongo J; González Y; Hernández G; Chinea G; Gerónimo H; Amarantes O; Beldarraín A; Páez R
    Biologicals; 2014 Nov; 42(6):322-33. PubMed ID: 25190208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stabilization of IgG1 in spray-dried powders for inhalation.
    Schüle S; Schulz-Fademrecht T; Garidel P; Bechtold-Peters K; Frieb W
    Eur J Pharm Biopharm; 2008 Aug; 69(3):793-807. PubMed ID: 18477504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of dynamics in complex lyophilized formulations: II. Analysis of density variations in terms of glass dynamics and comparisons with global mobility, fast dynamics, and Positron Annihilation Lifetime Spectroscopy (PALS).
    Chieng N; Cicerone MT; Zhong Q; Liu M; Pikal MJ
    Eur J Pharm Biopharm; 2013 Oct; 85(2):197-206. PubMed ID: 23623797
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-protein interactions and water activity coefficients can be used to aid a first excipient choice in protein formulations.
    Schleinitz M; Sadowski G; Brandenbusch C
    Int J Pharm; 2019 Oct; 569():118608. PubMed ID: 31415881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding.
    Singh SK; Kolhe P; Mehta AP; Chico SC; Lary AL; Huang M
    Pharm Res; 2011 Apr; 28(4):873-85. PubMed ID: 21213025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage.
    Lueckel B; Helk B; Bodmer D; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):337-46. PubMed ID: 9742554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: step by step evaluation from freezing to storage.
    Kawai K; Suzuki T
    Pharm Res; 2007 Oct; 24(10):1883-90. PubMed ID: 17486434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Arginine on the Aggregation of Protein in Freeze-Dried Formulations Containing Sugars and Polyol: 1-Formulation Development.
    Hackl E; Darkwah J; Smith G; Ermolina I
    AAPS PharmSciTech; 2018 Feb; 19(2):896-911. PubMed ID: 29047017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.