These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31276970)
1. Climate change impact on residual contaminants under sustainable remediation. Libera A; de Barros FPJ; Faybishenko B; Eddy-Dilek C; Denham M; Lipnikov K; Moulton D; Maco B; Wainwright H J Contam Hydrol; 2019 Oct; 226():103518. PubMed ID: 31276970 [TBL] [Abstract][Full Text] [Related]
2. Potential effects on groundwater quality associated with infiltrating stormwater through dry wells for aquifer recharge. Edwards EC; Nelson C; Harter T; Bowles C; Li X; Lock B; Fogg GE; Washburn BS J Contam Hydrol; 2022 Apr; 246():103964. PubMed ID: 35180606 [TBL] [Abstract][Full Text] [Related]
3. Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events. Sultana R; Johnson RH; Tigar AD; Wahl TJ; Meurer CE; Hoss KN; Xu S; Paradis CJ J Contam Hydrol; 2024 Jul; 265():104391. PubMed ID: 38936239 [TBL] [Abstract][Full Text] [Related]
4. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling. Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874 [TBL] [Abstract][Full Text] [Related]
5. Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: the F-Area Savannah River Site. Wan J; Tokunaga TK; Dong W; Denham ME; Hubbard SS Environ Sci Technol; 2012 Apr; 46(8):4490-7. PubMed ID: 22432961 [TBL] [Abstract][Full Text] [Related]
6. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840 [TBL] [Abstract][Full Text] [Related]
7. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system. Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489 [TBL] [Abstract][Full Text] [Related]
8. Using strontium isotopes to evaluate the spatial variation of groundwater recharge. Christensen JN; Dafflon B; Shiel AE; Tokunaga TK; Wan J; Faybishenko B; Dong W; Williams KH; Hobson C; Brown ST; Hubbard SS Sci Total Environ; 2018 Oct; 637-638():672-685. PubMed ID: 29758424 [TBL] [Abstract][Full Text] [Related]
9. Field experiments of surface water to groundwater recharge to characterize the mobility of uranium and vanadium at a former mill tailing site. Paradis CJ; Johnson RH; Tigar AD; Sauer KB; Marina OC; Reimus PW J Contam Hydrol; 2020 Feb; 229():103581. PubMed ID: 31810750 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study. Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320 [TBL] [Abstract][Full Text] [Related]
11. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
12. Fluoride in weathered rock aquifers of southern India: Managed Aquifer Recharge for mitigation. Brindha K; Jagadeshan G; Kalpana L; Elango L Environ Sci Pollut Res Int; 2016 May; 23(9):8302-16. PubMed ID: 26822219 [TBL] [Abstract][Full Text] [Related]
13. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin. Tillman FD; Gangopadhyay S; Pruitt T Ground Water; 2017 Jul; 55(4):506-518. PubMed ID: 28208211 [TBL] [Abstract][Full Text] [Related]
14. Climate change adaptation and mitigation measures for alluvial aquifers - Solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR). Jannis E; Vinnå LR; Annette A; Stefan S; Schilling OS Water Res; 2023 Jun; 238():119988. PubMed ID: 37126996 [TBL] [Abstract][Full Text] [Related]
15. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan. Ni CF; Li WC; Hsu SM; Lee IH; Lin CP Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403 [TBL] [Abstract][Full Text] [Related]
16. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092 [TBL] [Abstract][Full Text] [Related]
17. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
18. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Mas-Pla J; Menció A Environ Sci Pollut Res Int; 2019 Jan; 26(3):2184-2202. PubMed ID: 29644604 [TBL] [Abstract][Full Text] [Related]
19. Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal. Szymczycha B; Kroeger KD; Crusius J; Bratton JF Water Res; 2017 Oct; 123():794-801. PubMed ID: 28750329 [TBL] [Abstract][Full Text] [Related]
20. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]