These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Aquifer recharge by stormwater infiltration basins: Hydrological and vadose zone characteristics control the impacts of basins on groundwater chemistry and microbiology. Lebon Y; François C; Navel S; Vallier F; Guillard L; Pinasseau L; Oxarango L; Volatier L; Mermillod-Blondin F Sci Total Environ; 2023 Mar; 865():161115. PubMed ID: 36581297 [TBL] [Abstract][Full Text] [Related]
23. Mobility and persistence of pesticides and emerging contaminants in age-dated and redox-classified groundwater under a range of land use types. Broers HP; Kivits T; Sültenfuß J; Ten Harkel M; van Vliet M Sci Total Environ; 2024 Dec; 954():176344. PubMed ID: 39304139 [TBL] [Abstract][Full Text] [Related]
24. Estimating the impact of vadose zone heterogeneity on agricultural managed aquifer recharge: A combined experimental and modeling study. Zhou T; Levintal E; Brunetti G; Jordan S; Harter T; Kisekka I; Šimůnek J; Dahlke HE Water Res; 2023 Dec; 247():120781. PubMed ID: 37918200 [TBL] [Abstract][Full Text] [Related]
25. Tracing long-term vadose zone processes at the Nevada Test Site, USA. Hunt JR; Tompson AF Hydrol Process; 2005 Nov; 19(17):3383-3394. PubMed ID: 21785525 [TBL] [Abstract][Full Text] [Related]
26. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
27. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects. Henry EJ; Smith JE J Contam Hydrol; 2002 Jun; 56(3-4):247-70. PubMed ID: 12102321 [TBL] [Abstract][Full Text] [Related]
28. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters. Aquilina L; Vergnaud-Ayraud V; Labasque T; Bour O; Molénat J; Ruiz L; de Montety V; De Ridder J; Roques C; Longuevergne L Sci Total Environ; 2012 Oct; 435-436():167-78. PubMed ID: 22854088 [TBL] [Abstract][Full Text] [Related]
29. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport. Medici G; West LJ; Banwart SA J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856 [TBL] [Abstract][Full Text] [Related]
30. Modeling evaluation of the impact of residual source material on remedial time frame at a former uranium mill site. Kent RD; Johnson RH; Laase AD; Nyman JL J Contam Hydrol; 2024 Feb; 261():104298. PubMed ID: 38242064 [TBL] [Abstract][Full Text] [Related]
31. Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge. Zhang W; Huan Y; Yu X; Liu D; Zhou J J Environ Manage; 2015 Apr; 152():109-19. PubMed ID: 25617875 [TBL] [Abstract][Full Text] [Related]
32. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. Gumuła-Kawęcka A; Jaworska-Szulc B; Szymkiewicz A; Gorczewska-Langner W; Angulo-Jaramillo R; Šimůnek J Sci Total Environ; 2023 Jun; 877():162904. PubMed ID: 36933729 [TBL] [Abstract][Full Text] [Related]
33. Subglacial Meltwater Recharge in the Dongkemadi River Basin, Yangtze River Source Region. He Q; Kuang X; Chen J; Jiao JJ; Liang S; Zheng C Ground Water; 2022 May; 60(3):434-450. PubMed ID: 35212406 [TBL] [Abstract][Full Text] [Related]
34. Modeling interactions between saturated and un-saturated zones by Hydrus-1D in semi-arid regions (plain of Kairouan, Central Tunisia). Saâdi M; Zghibi A; Kanzari S Environ Monit Assess; 2018 Feb; 190(3):170. PubMed ID: 29478086 [TBL] [Abstract][Full Text] [Related]
35. The relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south-central USA. Degnan JR; Lindsey BD; Levitt JP; Szabo Z Sci Total Environ; 2020 Jun; 723():137835. PubMed ID: 32392689 [TBL] [Abstract][Full Text] [Related]
36. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge. Lewis J; Burman J; Edlund C; Simonsson L; Berglind R; Leffler P; Qvarfort U; Thiboutot S; Ampleman G; Meuken D; Duvalois W; Martel R; Sjöström J J Contam Hydrol; 2013 Mar; 146():8-15. PubMed ID: 23353636 [TBL] [Abstract][Full Text] [Related]
37. 3D modelling of surface spreading and underground dam groundwater recharge: Egri Creek Subbasin, Turkey. Sahin Y; Tayfur G Environ Monit Assess; 2023 May; 195(6):688. PubMed ID: 37198353 [TBL] [Abstract][Full Text] [Related]
38. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Akbarpour S; Niksokhan MH Environ Monit Assess; 2018 Sep; 190(10):579. PubMed ID: 30196319 [TBL] [Abstract][Full Text] [Related]
39. Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. Bastani M; Harter T J Contam Hydrol; 2019 Oct; 226():103521. PubMed ID: 31330339 [TBL] [Abstract][Full Text] [Related]
40. Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Akbariyeh S; Pena CAG; Wang T; Mohebbi A; Bartelt-Hunt S; Zhang J; Li Y Sci Total Environ; 2019 Oct; 685():514-526. PubMed ID: 31176972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]