These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31276970)

  • 41. Potential groundwater recharge from deep drainage of irrigation water.
    Altafi Dadgar M; Nakhaei M; Porhemmat J; Eliasi B; Biswas A
    Sci Total Environ; 2020 May; 716():137105. PubMed ID: 32044499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of groundwater recharge in the thick loess deposits by multiple environmental tracers.
    Wang W; Li S; Sun J; Huang Y; Han F; Li Z
    Sci Total Environ; 2023 Nov; 897():165360. PubMed ID: 37419345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.
    Delin GN; Herkelrath WN
    J Contam Hydrol; 2017 May; 200():49-59. PubMed ID: 28390700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater.
    Voisin J; Cournoyer B; Vienney A; Mermillod-Blondin F
    Sci Total Environ; 2018 Oct; 637-638():1496-1507. PubMed ID: 29801243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterisation of microbial activity in the framework of natural attenuation without groundwater monitoring wells?: a new Direct-Push probe.
    Schurig C; Melo VA; Miltner A; Kaestner M
    Environ Sci Pollut Res Int; 2014; 21(15):9002-15. PubMed ID: 23589263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soil Conservation Service-Curve Number method-based historical analysis of long-term (1936-2016) temporal evolution of city-scale potential natural groundwater recharge from precipitation: case study Algiers (Algeria).
    Boukhemacha MA
    Environ Monit Assess; 2023 Sep; 195(10):1168. PubMed ID: 37682383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Groundwater resources in Brazil: a review of possible impacts caused by climate change.
    Hirata R; Conicelli BP
    An Acad Bras Cienc; 2012 Jun; 84(2):297-312. PubMed ID: 22634744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain.
    Wöhling T; Gosses MJ; Wilson SR; Davidson P
    Ground Water; 2018 Jul; 56(4):647-666. PubMed ID: 29271082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The aquifer recharge: an overview of the legislative and planning aspect.
    De Giglio O; Caggiano G; Apollonio F; Marzella A; Brigida S; Ranieri E; Lucentini L; Uricchio VF; Montagna MT
    Ann Ig; 2018; 30(1):34-43. PubMed ID: 29215129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Competency of groundwater recharge of irrigated cotton field subjacent to sowing methods, plastic mulch, water productivity, and yield under climate change.
    Saeed M; Maqbool A; Ashraf MA; Arshad M; Mehmood K; Usman M; Farid MA
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17757-17771. PubMed ID: 34674128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of modeled recharge distribution on simulated groundwater availability and capture.
    Tillman FD; Pool DR; Leake SA
    Ground Water; 2015; 53(3):378-88. PubMed ID: 24841767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.
    Keesari T; Sharma DA; Rishi MS; Pant D; Mohokar HV; Jaryal AK; Sinha UK
    Appl Radiat Isot; 2017 Nov; 129():163-170. PubMed ID: 28865336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D modelling of solute transport and mixing during managed aquifer recharge with an infiltration basin.
    Bahar T; Oxarango L; Castebrunet H; Rossier Y; Mermillod-Blondin F
    J Contam Hydrol; 2021 Feb; 237():103758. PubMed ID: 33476871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly parameterized inversion of groundwater reactive transport for a complex field site.
    Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H
    J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aquifer heterogeneity controls to quality monitoring network performance for the protection of groundwater production wells.
    Sarris TS; Kenny A; Scott DM; Close ME
    Water Res; 2022 Jun; 218():118485. PubMed ID: 35504158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FIMAR: A new Fluoride Index to mitigate geogenic contamination by Managed Aquifer Recharge.
    Kalpana L; Brindha K; Elango L
    Chemosphere; 2019 Apr; 220():381-390. PubMed ID: 30593985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.