These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31276990)

  • 1. Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01.
    Bhatia SK; Gurav R; Choi TR; Han YH; Park YL; Park JY; Jung HR; Yang SY; Song HS; Kim SH; Choi KY; Yang YH
    Bioresour Technol; 2019 Oct; 289():121704. PubMed ID: 31276990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.
    Bhatia SK; Kim J; Song HS; Kim HJ; Jeon JM; Sathiyanarayanan G; Yoon JJ; Park K; Kim YG; Yang YH
    Bioresour Technol; 2017 Jun; 233():99-109. PubMed ID: 28260667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering.
    Bhatia SK; Gurav R; Choi TR; Han YH; Park YL; Jung HR; Yang SY; Song HS; Yang YH
    Bioresour Technol; 2019 Aug; 286():121383. PubMed ID: 31071574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16.
    Chong GG; Huang XJ; Di JH; Xu DZ; He YC; Pei YN; Tang YJ; Ma CL
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):501-510. PubMed ID: 29279999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unleashing the capacity of Rhodococcus for converting lignin into lipids.
    Zhao ZM; Liu ZH; Zhang T; Meng R; Gong Z; Li Y; Hu J; Ragauskas AJ; Li BZ; Yuan YJ
    Biotechnol Adv; 2024; 70():108274. PubMed ID: 37913947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental alterations in biofuel generating molecules in Zilla spinosa.
    Khattab H; El Marid Z
    Z Naturforsch C J Biosci; 2017 Mar; 72(3-4):77-91. PubMed ID: 27740933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production.
    Sheikh MM; Kim CH; Park HH; Nam HG; Lee GS; Jo HS; Lee JY; Kim JW
    J Sci Food Agric; 2015 Mar; 95(4):843-50. PubMed ID: 25408101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues.
    Le RK; Mahan KM; Ragauskas AJ
    Methods Mol Biol; 2019; 1995():103-120. PubMed ID: 31148123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.
    Qin L; Qian H; He Y
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1336-1350. PubMed ID: 28516417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa.
    Shekh AY; Shrivastava P; Krishnamurthi K; Mudliar SN; Devi SS; Kanade GS; Lokhande SK; Chakrabarti T
    Bioresour Technol; 2013 Jun; 138():382-6. PubMed ID: 23642439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the potential of 10 microalgal strains for biodiesel production.
    Song M; Pei H; Hu W; Ma G
    Bioresour Technol; 2013 Aug; 141():245-51. PubMed ID: 23489572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal growth control by a barley straw extract.
    Ball AS; Williams M; Vincent D; Robinson J
    Bioresour Technol; 2001 Apr; 77(2):177-81. PubMed ID: 11272025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions.
    Zhou X; Xia L; Ge H; Zhang D; Hu C
    Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.
    Katre G; Ajmera N; Zinjarde S; RaviKumar A
    Microb Cell Fact; 2017 Oct; 16(1):176. PubMed ID: 29065878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid analysis of barley straw before and after dilute sulfuric acid pretreatment by photoluminescence.
    Kim SB; Cui C; Lee JH; Lee SJ; Ahn DJ; Park C; Kim JS; Kim SW
    Bioresour Technol; 2013 Oct; 146():789-793. PubMed ID: 23972397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.