BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31277008)

  • 1. Changes in fish sex ratio as a basis for regulating endocrine disruptors.
    Dang Z; Kienzler A
    Environ Int; 2019 Sep; 130():104928. PubMed ID: 31277008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of fish biomarker data for identification, classification, risk assessment and testing of endocrine disrupting chemicals.
    Dang Z
    Environ Int; 2016; 92-93():422-41. PubMed ID: 27155823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fish biomarkers for regulatory identification of endocrine disrupting chemicals.
    Dang Z
    Environ Pollut; 2014 Feb; 185():266-70. PubMed ID: 24316064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the sensitivity of three North American fish species to disruptors of steroidogenesis using in vitro tissue explants.
    Beitel SC; Doering JA; Patterson SE; Hecker M
    Aquat Toxicol; 2014 Jul; 152():273-83. PubMed ID: 24800870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole).
    Luzio A; Monteiro SM; Rocha E; Fontaínhas-Fernandes AA; Coimbra AM
    Aquat Toxicol; 2016 Jun; 175():90-105. PubMed ID: 27002526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endpoint sensitivity in fish endocrine disruption assays: regulatory implications.
    Dang Z; Li K; Yin H; Hakkert B; Vermeire T
    Toxicol Lett; 2011 Apr; 202(1):36-46. PubMed ID: 21295121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action.
    Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH
    Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time PCR-based prediction of gonad phenotype in medaka.
    Flynn K; Haasch M; Shadwick DS; Johnson R
    Ecotoxicol Environ Saf; 2010 May; 73(4):589-94. PubMed ID: 20074805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development.
    Luzio A; Santos D; Fontaínhas-Fernandes AA; Monteiro SM; Coimbra AM
    Aquat Toxicol; 2016 May; 174():22-35. PubMed ID: 26897088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The maturity index as a tool to facilitate the interpretation of changes in vitellogenin production and sex ratio in the Fish Sexual Development Test.
    Baumann L; Holbech H; Keiter S; Kinnberg KL; Knörr S; Nagel T; Braunbeck T
    Aquat Toxicol; 2013 Mar; 128-129():34-42. PubMed ID: 23261669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish toxicity testing for identification of thyroid disrupting chemicals.
    Dang Z; Arena M; Kienzler A
    Environ Pollut; 2021 Sep; 284():117374. PubMed ID: 34051580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish sex differentiation and gonad development: A review on the impact of environmental factors.
    Santos D; Luzio A; Coimbra AM
    Aquat Toxicol; 2017 Oct; 191():141-163. PubMed ID: 28841494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test.
    Muth-Köhne E; Westphal-Settele K; Brückner J; Konradi S; Schiller V; Schäfers C; Teigeler M; Fenske M
    Aquat Toxicol; 2016 Jul; 176():116-27. PubMed ID: 27130971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitellogenin levels and others biomarkers show evidences of endocrine disruption in fish species from Iguaçu River - Southern Brazil.
    Yamamoto FY; Garcia JRE; Kupsco A; Oliveira Ribeiro CA
    Chemosphere; 2017 Nov; 186():88-99. PubMed ID: 28772185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional responses in male Japanese medaka exposed to antiandrogens and antiandrogen/androgen mixtures.
    Sun L; Peng T; Liu F; Ren L; Peng Z; Ji G; Zhou Y; Fu Z
    Environ Toxicol; 2016 Nov; 31(11):1591-1599. PubMed ID: 26098908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocrine disrupting chemicals and sexual behaviors in fish--a critical review on effects and possible consequences.
    Söffker M; Tyler CR
    Crit Rev Toxicol; 2012 Sep; 42(8):653-68. PubMed ID: 22697575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water.
    He Y; Wiseman SB; Wang N; Perez-Estrada LA; El-Din MG; Martin JW; Giesy JP
    Environ Sci Technol; 2012 Sep; 46(17):9701-8. PubMed ID: 22856545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption.
    Schiller V; Zhang X; Hecker M; Schäfers C; Fischer R; Fenske M
    Aquat Toxicol; 2014 Oct; 155():62-72. PubMed ID: 24992288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of circadian rhythmic pathway genes and perturbation of oscillation patterns in endocrine disrupting chemicals (EDCs)-exposed mangrove killifish Kryptolebias marmoratus.
    Rhee JS; Kim BM; Lee BY; Hwang UK; Lee YS; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Aug; 164():11-20. PubMed ID: 24726801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review.
    Milla S; Depiereux S; Kestemont P
    Ecotoxicology; 2011 Mar; 20(2):305-19. PubMed ID: 21210218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.