These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31277266)

  • 21. Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities.
    Zhao B; Li X; Zeng S; Wang R; Wang L; Che R; Zhang R; Park CB
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50793-50802. PubMed ID: 33119254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams.
    Hassan MM; Tucker N; Le Guen MJ
    Carbohydr Polym; 2020 Feb; 230():115675. PubMed ID: 31887917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive modulus and deformation mechanisms of 3DG foams: experimental investigation and multiscale modeling.
    Mahdavi SM; Adibnazari S; Del Monte F; Gutiérrez MC
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34343983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ether imide)/Epoxy Foam Composites with a Microcellular Structure and Ultralow Density: Bead Foam Fabrication, Compression Molding, Mechanical Properties, Thermal Stability, and Flame-Retardant Properties.
    Jiang J; Feng W; Zhao D; Zhai W
    ACS Omega; 2020 Oct; 5(40):25784-25797. PubMed ID: 33073103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property.
    Yan J; Wu T; Ding Z; Li X
    Carbohydr Polym; 2016 Jan; 136():1288-96. PubMed ID: 26572473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO₂ Dissolution.
    Abbasi H; Antunes M; Velasco JI
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications.
    Choi H; Shil'ko S; Gubicza J; Choe H
    J Mech Behav Biomed Mater; 2017 Aug; 72():66-73. PubMed ID: 28458028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Wood Fibers in Tuning Dynamic Rheology, Non-Isothermal Crystallization, and Microcellular Structure of Polypropylene Foams.
    Song Y; Wang Y; Li H; Zong Q; Xu A
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30598010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding.
    Wang L; Okada K; Hikima Y; Ohshima M; Sekiguchi T; Yano H
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of three-dimensional polyetherimide bead foams
    Feng D; Li L; Wang Q
    RSC Adv; 2019 Jan; 9(7):4072-4081. PubMed ID: 35518111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influences of Increased Pressure Foaming on the Cellular Structure and Compressive Properties of In Situ Al-4.5%Cu-xTiB
    Niu Z; An Z; Jiang Z; Cao Z; Yu Y
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(d,l-Lactic acid) Composite Foams Containing Phosphate Glass Particles Produced via Solid-State Foaming Using CO
    Shah Mohammadi M; Rezabeigi E; Bertram J; Marelli B; Gendron R; Nazhat SN; Bureau MN
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone.
    Abbasi H; Antunes M; Velasco JI
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic Characteristics of Microcellular Foamed Ceramic Urethane.
    Hong J; Cha SW
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Foaming Formulation and Operating Pressure on Thermoregulating Polyurethane Foams.
    Serrano A; Borreguero AM; Catalá J; Rodríguez JF; Carmona M
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.
    Ardanuy M; Antunes M; Velasco JI
    Waste Manag; 2012 Feb; 32(2):256-63. PubMed ID: 22005571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microcellular foams made from gliadin.
    Quester S; Dahesh M; Strey R
    Colloid Polym Sci; 2014; 292(9):2385-2389. PubMed ID: 25190899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extruded Polystyrene Foams with Enhanced Insulation and Mechanical Properties by a Benzene-Trisamide-Based Additive.
    Aksit M; Zhao C; Klose B; Kreger K; Schmidt HW; Altstädt V
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compression-Softening Bond Model for Non-Water Reactive Foaming Polyurethane Grouting Material.
    Dong B; Du M; Fang H; Wang F; Zhang H; Zhu L
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.