These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31277381)

  • 41. A Green Approach to Modify Surface Properties of Polyurethane Foam for Enhanced Oil Absorption.
    Ng ZC; Roslan RA; Lau WJ; Gürsoy M; Karaman M; Jullok N; Ismail AF
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites.
    Paciorek-Sadowska J; Borowicz M; Isbrandt M; Czupryński B; Apiecionek Ł
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31480439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.
    Li Y; Ren H; Ragauskas AJ
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6904-11. PubMed ID: 22103097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on preparation and performance of PEG-based polyurethane foams modified by the chitosan with different molecular weight.
    Qin H; Wang K
    Int J Biol Macromol; 2019 Nov; 140():877-885. PubMed ID: 31446107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane.
    Tran MH; Yu JH; Lee EY
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application.
    Udayakumar M; Boros RZ; Farkas L; Simon A; Koós T; Leskó M; Leskó AK; Hernadi K; Németh Z
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties.
    De Luca Bossa F; Santillo C; Verdolotti L; Campaner P; Minigher A; Boggioni L; Losio S; Coccia F; Iannace S; Lama GC
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Various Types of Expandable Graphite and Blackcurrant Pomace on the Properties of Viscoelastic Polyurethane Foams.
    Oliwa R; Ryszkowska J; Oleksy M; Auguścik-Królikowska M; Gzik M; Bartoń J; Budzik G
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33917343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of thermal aging on the transport and acoustic properties of partially reticulated polyurethane foams.
    Yang SS; Lee JW; Kim JH; Kang YJ
    J Acoust Soc Am; 2022 Oct; 152(4):2369. PubMed ID: 36319261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.
    Luo X; Xiao Y; Wu Q; Zeng J
    Int J Biol Macromol; 2018 Aug; 115():786-791. PubMed ID: 29702166
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam.
    Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol.
    de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive.
    Maiuolo L; Olivito F; Algieri V; Costanzo P; Jiritano A; Tallarida MA; Tursi A; Sposato C; Feo A; De Nino A
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A New Methodology Based on Cell-Wall Hole Analysis for the Structure-Acoustic Absorption Correlation on Polyurethane Foams.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566975
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties.
    Shi H; Shi D; Yin L; Yang Z; Luan S; Gao J; Zha J; Yin J; Li RK
    Nanoscale; 2014 Nov; 6(22):13748-53. PubMed ID: 25285907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation on Compression Mechanical Properties of Rigid Polyurethane Foam Treated under Random Vibration Condition: An Experimental and Numerical Simulation Study.
    Qiu D; He Y; Yu Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dog Wool Microparticles/Polyurethane Composite for Thermal Insulation.
    Silva FCD; Felgueiras HP; Ladchumananandasivam R; Mendes JUL; Silva KKOS; Zille A
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32403401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.