BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31277456)

  • 1. Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model.
    Akbari E; Spychalski GB; Rangharajan KK; Prakash S; Song JW
    Lab Chip; 2018 Mar; 18(7):1084-1093. PubMed ID: 29488533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate.
    Akbari E; Spychalski GB; Menyhert MM; Rangharajan KK; Tinapple JW; Prakash S; Song JW
    Biomater Biosyst; 2021 Sep; 3():. PubMed ID: 35317095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct current electric field regulates endothelial permeability under physiologically relevant fluid forces in a microfluidic vessel bifurcation model.
    Mohana Sundaram P; Rangharajan KK; Akbari E; Hadick TJ; Song JW; Prakash S
    Lab Chip; 2021 Jan; 21(2):319-330. PubMed ID: 33319218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid shear stress threshold regulates angiogenic sprouting.
    Galie PA; Nguyen DH; Choi CK; Cohen DM; Janmey PA; Chen CS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7968-73. PubMed ID: 24843171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid forces control endothelial sprouting.
    Song JW; Munn LL
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15342-7. PubMed ID: 21876168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-Stress Sensitive Inwardly-Rectifying K
    Boriushkin E; Fancher IS; Levitan I
    Cell Physiol Biochem; 2019; 52(6):1569-1583. PubMed ID: 31145841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the preservation of vessel bifurcations during flow-mediated angiogenic remodelling.
    Edgar LT; Franco CA; Gerhardt H; Bernabeu MO
    PLoS Comput Biol; 2021 Feb; 17(2):e1007715. PubMed ID: 33539345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S1P Synergizes with Wall Shear Stress and Other Angiogenic Factors to Induce Endothelial Cell Sprouting Responses.
    Duran CL; Kaunas R; Bayless KJ
    Methods Mol Biol; 2018; 1697():99-115. PubMed ID: 28456951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4151-7. PubMed ID: 26552886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady unidirectional laminar flow inhibits monolayer formation by human and rat microvascular endothelial cells.
    Rezvan A; Allen FD; Lelkes PI
    Endothelium; 2004; 11(1):11-6. PubMed ID: 15203875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis and Functional Vessel Formation Induced by Interstitial Flow and Vascular Endothelial Growth Factor Using a Microfluidic Chip.
    Liu Y; Li J; Zhou J; Liu X; Li H; Lu Y; Lin B; Li X; Liu T
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model.
    Tran KA; Baldwin-Leclair A; DeOre BJ; Antisell M; Galie PA
    J Cell Physiol; 2022 Oct; 237(10):3872-3882. PubMed ID: 35901247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress.
    Kaunas R; Kang H; Bayless KJ
    Cell Mol Bioeng; 2011 Dec; 4(4):547-559. PubMed ID: 22247741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pericytes and shear stress each alter the shape of a self-assembled vascular network.
    Fujimoto K; Erickson S; Nakayama M; Ihara H; Sugihara K; Nashimoto Y; Nishiyama K; Miura T; Yokokawa R
    Lab Chip; 2023 Jan; 23(2):306-317. PubMed ID: 36537555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a three-dimensional model to study human uterine angiogenesis.
    Duran CL; Abbey CA; Bayless KJ
    Mol Hum Reprod; 2018 Feb; 24(2):74-93. PubMed ID: 29329415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation.
    Liu C; Cui X; Ackermann TM; Flamini V; Chen W; Castillo AB
    Integr Biol (Camb); 2016 Jul; 8(7):785-94. PubMed ID: 27332785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.