BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31277462)

  • 1. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor.
    Liu H; Zhang S; Yang J; Ji M; Yu J; Wang M; Chai X; Yang B; Zhu C; Xu J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Analysis and Crystal Structure of Poly(Acrylonitrile-Co-Itaconic Acid) Copolymers Synthesized in Water.
    Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.
    Alarifi IM; Alharbi A; Khan WS; Swindle A; Asmatulu R
    Materials (Basel); 2015 Oct; 8(10):7017-7031. PubMed ID: 28793615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form.
    Alarifi IM; Khan WS; Asmatulu R
    PLoS One; 2018; 13(8):e0201345. PubMed ID: 30091992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Carbon Nanofiber Precursor: Poly(acrylonitrile-co-vinylacetate-co-itaconic acid) Terpolymer.
    Can DS; Baskan H; Gumrukcu S; Sarac AS
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3844-3853. PubMed ID: 30764942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers.
    Ji L; Saquing C; Khan SA; Zhang X
    Nanotechnology; 2008 Feb; 19(8):085605. PubMed ID: 21730729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Stabilization of High Molecular Weight Poly (acrylonitrile-
    Zhang S; Dang Y; Ni X; Yuan C; Chen H; Ju A
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study.
    Gergin İ; Ismar E; Sarac AS
    Beilstein J Nanotechnol; 2017; 8():1616-1628. PubMed ID: 28875098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Transformation of Polyacrylonitrile (PAN) Fibers during Rapid Thermal Pretreatment in Nitrogen Atmosphere.
    Dang W; Liu J; Wang X; Yan K; Zhang A; Yang J; Chen L; Liang J
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Polyacrylonitrile Precursor Orientation on the Structures and Properties of Thermally Stabilized Carbon Fiber.
    Wang B; Li C; Cao W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Changes of Structures and Properties of PAN Fibers during the Cyclic Reaction in Supercritical Carbon Dioxide.
    Qiao M; Kong H; Ding X; Hu Z; Zhang L; Cao Y; Yu M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films.
    Chen T; Chi Y; Liu X; Xia X; Chen Y; Xu J; Song Y
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid carbon silica nanofibers through sol-gel electrospinning.
    Pirzada T; Arvidson SA; Saquing CD; Shah SS; Khan SA
    Langmuir; 2014 Dec; 30(51):15504-13. PubMed ID: 25474752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites.
    Song Z; Hou X; Zhang L; Wu S
    Materials (Basel); 2011 Apr; 4(4):621-632. PubMed ID: 28879944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and Conducting Carbon Nanofibers Obtained from Electrospun Polyacrylonitrile/Phosphoric Acid Nanofibers.
    Lim BH; Nirmala R; Navamathavan R; Kim HY
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1033-7. PubMed ID: 27398565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of a Methodology to Enhance the Stabilization Process of PAN Fibers by Modeling and Advanced Characterization.
    Konstantopoulos G; Soulis S; Dragatogiannis D; Charitidis C
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and Morphological Transition of Poly(acrylonitrile)/Poly(vinylidene Fluoride) Blend Nanofibers during Oxidative Stabilization and Incipient Carbonization.
    Wortmann M; Frese N; Mamun A; Trabelsi M; Keil W; Büker B; Javed A; Tiemann M; Moritzer E; Ehrmann A; Hütten A; Schmidt C; Gölzhäuser A; Hüsgen B; Sabantina L
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanofibers based carbon-carbon composite fibers.
    Hiremath N; Bhat S; Boy R; Evora MC; Naskar AK; Mays J; Bhat G
    Discov Nano; 2023 Dec; 18(1):159. PubMed ID: 38127269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of multiwalled CNT-PAN based composite carbon nanofibers via electrospinning.
    Kaur N; Kumar V; Dhakate SR
    Springerplus; 2016; 5():483. PubMed ID: 27217998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.