BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31277550)

  • 1. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 3. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides.
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    Sci Rep; 2019 Jan; 9(1):39. PubMed ID: 30631105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RecT Recombinase Expression Enables Efficient Gene Editing in
    Chen V; Griffin ME; Maguin P; Varble A; Hang HC
    Appl Environ Microbiol; 2021 Aug; 87(18):e0084421. PubMed ID: 34232061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods.
    Leenay RT; Vento JM; Shah M; Martino ME; Leulier F; Beisel CL
    Biotechnol J; 2019 Mar; 14(3):e1700583. PubMed ID: 30156038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 11. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of
    Liang Y; Wei Y; Jiao S; Yu H
    Synth Syst Biotechnol; 2021 Sep; 6(3):200-208. PubMed ID: 34430726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombineering in Staphylococcus aureus.
    Penewit K; Salipante SJ
    Methods Mol Biol; 2022; 2479():135-157. PubMed ID: 35583737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas12a-Assisted Recombineering in Bacteria.
    Yan MY; Yan HQ; Ren GX; Zhao JP; Guo XP; Sun YC
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28646112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering.
    Xia J; Wang L; Zhu JB; Sun CJ; Zheng MG; Zheng L; Lou YH; Shi L
    Biotechnol Lett; 2016 Jan; 38(1):117-22. PubMed ID: 26358622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida.
    Aparicio T; de Lorenzo V; Martínez-García E
    Biotechnol J; 2018 May; 13(5):e1700161. PubMed ID: 29058367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing by CRISPR/Cas12 Recognizing AT-Rich PAMs in
    Chen Y; Cheng M; Feng X; Niu X; Song H; Cao Y
    ACS Synth Biol; 2022 Sep; 11(9):2947-2955. PubMed ID: 36048424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.