These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31277860)

  • 21. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat.
    Gauthier P; Arnaud C; Gandolfo G; Gottesmann C
    Brain Res; 1997 Oct; 773(1-2):8-14. PubMed ID: 9409699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of sleep-active neurons in the medullary parafacial zone in rats.
    Alam MA; Kostin A; Siegel J; McGinty D; Szymusiak R; Alam MN
    Sleep; 2018 Oct; 41(10):. PubMed ID: 29986116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex?
    Luppi PH; Chancel A; Malcey J; Cabrera S; Fort P; Maciel RM
    Sleep Med Rev; 2024 Apr; 74():101907. PubMed ID: 38422648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle.
    Hassani OK; Lee MG; Henny P; Jones BE
    J Neurosci; 2009 Sep; 29(38):11828-40. PubMed ID: 19776269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep-wake states studied by cytotoxic lesions in the cat.
    Holmes CJ; Jones BE
    Neuroscience; 1994 Oct; 62(4):1179-200. PubMed ID: 7845593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From waking to sleeping: neuronal and chemical substrates.
    Jones BE
    Trends Pharmacol Sci; 2005 Nov; 26(11):578-86. PubMed ID: 16183137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse.
    Chazalon M; Dumas S; Bernard JF; Sahly I; Tronche F; de Kerchove d'Exaerde A; Hamon M; Adrien J; Fabre V; Bonnavion P
    Neuropharmacology; 2018 Aug; 138():315-330. PubMed ID: 29908240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arousal systems.
    Jones BE
    Front Biosci; 2003 May; 8():s438-51. PubMed ID: 12700104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single unit activity of periaqueductal gray and deep mesencephalic nucleus neurons involved in sleep stage switching in the mouse.
    Sakai K
    Eur J Neurosci; 2018 May; 47(9):1110-1126. PubMed ID: 29498771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arousal and sleep circuits.
    Jones BE
    Neuropsychopharmacology; 2020 Jan; 45(1):6-20. PubMed ID: 31216564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetylcholine systems and rhythmic activities during the waking--sleep cycle.
    Steriade M
    Prog Brain Res; 2004; 145():179-96. PubMed ID: 14650916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching.
    Sakai K
    Eur J Neurosci; 2018 Jun; 47(12):1482-1503. PubMed ID: 29791042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance.
    Gvilia I; Suntsova N; Kumar S; McGinty D; Szymusiak R
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1092-100. PubMed ID: 26333784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat.
    Goutagny R; Luppi PH; Salvert D; Lapray D; Gervasoni D; Fort P
    Neuroscience; 2008 Mar; 152(3):849-57. PubMed ID: 18308473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melanin-concentrating hormone control of sleep-wake behavior.
    Monti JM; Torterolo P; Lagos P
    Sleep Med Rev; 2013 Aug; 17(4):293-8. PubMed ID: 23477948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking.
    Monti JM; Jantos H
    Prog Brain Res; 2008; 172():625-46. PubMed ID: 18772053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex.
    Jones BE
    Prog Brain Res; 2004; 145():157-69. PubMed ID: 14650914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.