BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31277861)

  • 41. Sleep/Wake Detection by Behavioral Response to Haptic Stimuli.
    Miller KE; Bäbler L; Maillart T; Faerman A; Woodward SH
    J Clin Sleep Med; 2019 Nov; 15(11):1675-1681. PubMed ID: 31739859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification.
    Herlan A; Ottenbacher J; Schneider J; Riemann D; Feige B
    J Sleep Res; 2019 Apr; 28(2):e12694. PubMed ID: 29722079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance evaluation of Fitbit Charge 3 and actigraphy vs. polysomnography: Sensitivity, specificity, and reliability across participants and nights.
    Eylon G; Tikotzky L; Dinstein I
    Sleep Health; 2023 Aug; 9(4):407-416. PubMed ID: 37270397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sleep stage classification by non-contact vital signs indices using Doppler radar sensors.
    Kagawa M; Suzumura K; Matsui T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4913-4916. PubMed ID: 28325016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel and noninvasive methods for in-home sleep measurement and subsequent state coding in 12-month-old infants.
    Horger MN
    Infant Behav Dev; 2022 Nov; 69():101775. PubMed ID: 36126380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress.
    Kogure T; Shirakawa S; Shimokawa M; Hosokawa Y
    J Physiol Anthropol; 2011; 30(3):103-9. PubMed ID: 21636953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reliability of Actigraphy and Subjective Sleep Measurements in Adults: The Design of Sleep Assessments.
    Aili K; Åström-Paulsson S; Stoetzer U; Svartengren M; Hillert L
    J Clin Sleep Med; 2017 Jan; 13(1):39-47. PubMed ID: 27707448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-constraining sleep/wake monitoring system using bed actigraphy.
    Choi BH; Seo JW; Choi JM; Shin HB; Lee JY; Jeong DU; Park KS
    Med Biol Eng Comput; 2007 Jan; 45(1):107-14. PubMed ID: 17146691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of actigraphy and polysomnography to assess effects of zolpidem in a clinical research unit.
    Peterson BT; Chiao P; Pickering E; Freeman J; Zammit GK; Ding Y; Badura LL
    Sleep Med; 2012 Apr; 13(4):419-24. PubMed ID: 22317945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and Evaluation of a Wearable Device for Sleep Quality Assessment.
    Kuo CE; Liu YC; Chang DW; Young CP; Shaw FZ; Liang SF
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1547-1557. PubMed ID: 28113301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automation of classification of sleep stages and estimation of sleep efficiency using actigraphy.
    Kim H; Kim D; Oh J
    Front Public Health; 2022; 10():1092222. PubMed ID: 36699913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sleep/wake detection based on cardiorespiratory signals and actigraphy.
    Devot S; Dratwa R; Naujokat E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5089-92. PubMed ID: 21096033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of bioelectrical impedance analysis-guided dry weight adjustment, in comparison to standard clinical-guided, on the sleep quality of chronic haemodialysis patients (BEDTIME study): a randomised controlled trial.
    Sethakarun S; Bijaphala S; Kitiyakara C; Boongird S; Phanachet P; Reutrakul S; Pirojsakul K; Nongnuch A
    BMC Nephrol; 2019 Sep; 20(1):211. PubMed ID: 31474223
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection and analysis of pulse waves during sleep via wrist-worn actigraphy.
    Zschocke J; Kluge M; Pelikan L; Graf A; Glos M; Müller A; Mikolajczyk R; Bartsch RP; Penzel T; Kantelhardt JW
    PLoS One; 2019; 14(12):e0226843. PubMed ID: 31891612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Addressing the challenges of sleep/wake class imbalance in bed based non-contact actigraphic recordings of sleep.
    McDowell A; Donnelly MP; Nugent CD; Galway L; McGrath MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4654-7. PubMed ID: 24110772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of subjectively and objectively assessed sleep problems in breast cancer patients starting neoadjuvant chemotherapy.
    Kreutz C; Müller J; Schmidt ME; Steindorf K
    Support Care Cancer; 2021 Feb; 29(2):1015-1023. PubMed ID: 32556623
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ambulatory monitoring of sleep disorders.
    Tahmasian M; Khazaie H; Sepehry AA; Russo MB
    J Pak Med Assoc; 2010 Jun; 60(6):480-7. PubMed ID: 20527649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of physical activity and sleep by actigraphy: examination of gender differences.
    Jean-Louis G; Mendlowicz MV; Von Gizycki H; Zizi F; Nunes J
    J Womens Health Gend Based Med; 1999 Oct; 8(8):1113-7. PubMed ID: 10565670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of Commercial Wrist-Based and Smartphone Accelerometers, Actigraphy, and PSG in a Clinical Cohort of Children and Adolescents.
    Toon E; Davey MJ; Hollis SL; Nixon GM; Horne RS; Biggs SN
    J Clin Sleep Med; 2016 Mar; 12(3):343-50. PubMed ID: 26446248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.