These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31278030)

  • 1. In vitro selection of a 3' terminal short protector that stabilizes transcripts to improve the translation efficiency in a wheat germ extract.
    Ogawa A; Kutsuna A; Takamatsu M; Okuzono T
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2141-2144. PubMed ID: 31278030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract.
    Ogawa A; Tabuchi J; Doi Y
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3724-7. PubMed ID: 25037913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of the start codon to enhance Cripavirus internal ribosome entry site-mediated translation in a wheat germ extract.
    Ogawa A; Takamatsu M
    Bioorg Med Chem Lett; 2019 Nov; 29(22):126729. PubMed ID: 31607608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions.
    Takahashi H; Ogawa A
    Bioorg Med Chem Lett; 2021 Nov; 52():128412. PubMed ID: 34634474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of end processing and degradation of premature tRNAs and their application to stabilization of in vitro transcripts in wheat germ extract.
    Ogawa A; Doi Y
    Org Biomol Chem; 2015 Jan; 13(4):1008-12. PubMed ID: 25469846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the in vitro import ability of mitochondrial precursor proteins synthesized in wheat germ transcription-translation extract.
    Dessi P; Pavlov PF; Wållberg F; Rudhe C; Brack S; Whelan J; Glaser E
    Plant Mol Biol; 2003 May; 52(2):259-71. PubMed ID: 12856934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract.
    Ogawa A; Namba Y; Gakumasawa M
    Org Biomol Chem; 2016 Mar; 14(9):2671-8. PubMed ID: 26832824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofunction-assisted DNA detection through RNase H-enhanced 3' processing of a premature tRNA probe in a wheat germ extract.
    Ogawa A; Tabuchi J; Doi Y; Takamatsu M
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3658-61. PubMed ID: 27289318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract.
    Ogawa A; Doi Y; Matsushita N
    Org Biomol Chem; 2011 Dec; 9(24):8495-503. PubMed ID: 22068346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate.
    Biberman Y; Meyuhas O
    FEBS Lett; 1999 Aug; 456(3):357-60. PubMed ID: 10462043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free protein synthesis as a promising expression system for recombinant proteins.
    Ge X; Xu J
    Methods Mol Biol; 2012; 824():565-78. PubMed ID: 22160920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of ribonuclease H activities present in two cell-free protein synthesizing systems, the wheat germ extract and the rabbit reticulocyte lysate.
    Cazenave C; Frank P; Büsen W
    Biochimie; 1993; 75(1-2):113-22. PubMed ID: 8389210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-Free Synthesis of Plant Receptor Kinases.
    Nozawa A; Nemoto K; Nomura S; Yamanaka S; Kido K; Sawasaki T
    Methods Mol Biol; 2017; 1621():37-46. PubMed ID: 28567641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro translation of plant viral RNA.
    Browning KS; Mayberry L
    Curr Protoc Microbiol; 2006 Jun; Chapter 16():16K.1.1-16K.1.13. PubMed ID: 18770587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat germ systems for cell-free protein expression.
    Harbers M
    FEBS Lett; 2014 Aug; 588(17):2762-73. PubMed ID: 24931374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and accurate initiation of transcription at the T-DNA promoter in a soluble chromatin extract from wheat germ.
    Yamazaki K; Imamoto F
    Mol Gen Genet; 1987 Oct; 209(3):445-52. PubMed ID: 17193708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential resistance to proteinase K digestion of the yeast prion-like (Ure2p) protein synthesized in vitro in wheat germ extract and rabbit reticulocyte lysate cell-free translation systems.
    Komar AA; Lesnik T; Cullin C; Guillemet E; Ehrlich R; Reiss C
    FEBS Lett; 1997 Sep; 415(1):6-10. PubMed ID: 9326358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of translational initiation in the wheat-embryo cell-free protein expression system for producing homogenous products.
    Ohta T; Matsuoka H; Nomura Y; Tozawa Y
    Protein Expr Purif; 2010 Sep; 73(1):15-22. PubMed ID: 20304073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of different mitochondrial targeting sequences of the yeast mitochondrial transcription factor Mtf1p when synthesized in alternative translation systems.
    Biswas TK; Getz GS
    Biochem J; 2004 Oct; 383(Pt 2):383-91. PubMed ID: 15257659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.