BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31278130)

  • 1. Short-term, but not long-term, increased daytime workload leads to decreased night-time energetics in a free-living song bird.
    Visser ME; van Dooremalen C; Tomotani BM; Bushuev A; Meijer HAJ; Te Marvelde L; Gienapp P
    J Exp Biol; 2019 Jul; 222(Pt 14):. PubMed ID: 31278130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic consequences of hard work.
    Nilsson JA
    Proc Biol Sci; 2002 Aug; 269(1501):1735-9. PubMed ID: 12204136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimation of heritability and repeatability of resting metabolic rate in birds, with free-living pied flycatchers Ficedula hypoleuca (Aves: Passeriformes) as an example].
    Bushuev AV; Kerimov AB; Ivankina EV
    Zh Obshch Biol; 2010; 71(5):402-24. PubMed ID: 21061640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Intake, Basal Metabolic Rate, and Within-Individual Trade-Offs in Men and Women Training for a Half Marathon: A Reanalysis.
    Careau V
    Physiol Biochem Zool; 2017; 90(3):392-398. PubMed ID: 28384424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches.
    Wiersma P; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4091-8. PubMed ID: 16244168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.
    Swanson DL; McKechnie AE; Vézina F
    J Comp Physiol B; 2017 Dec; 187(8):1039-1056. PubMed ID: 28401293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure.
    Bozinovic F; Bacigalupe LD; Vásquez RA; Visser GH; Veloso C; Kenagy GJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Mar; 137(3):597-604. PubMed ID: 15123196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Specific immunity and polymorphism of breeding plumage in pied flycatcher (Ficedula hypoleuca) males (Aves: passeriformes)].
    Kerimov AB; Rogovin KA; Ivankina EV; Bushuev AV; Sokolova OV; Il'ina TA
    Zh Obshch Biol; 2012; 73(5):349-59. PubMed ID: 23136790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy requirements of pregnancy in The Gambia.
    Lawrence M; Lawrence F; Coward WA; Cole TJ; Whitehead RG
    Lancet; 1987 Nov; 2(8567):1072-6. PubMed ID: 2889977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy economy of the arctic-breeding Kittiwake (Rissa tridactyla): a review.
    Bech C; Langseth I; Moe B; Fyhn M; Gabrielsen GW
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):765-70. PubMed ID: 12443932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessing the definition of basal metabolic rate: Circadian considerations in avian studies.
    Ellis HI; Gabrielsen GW
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Nov; 237():110541. PubMed ID: 31419578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meeting the energy demands of reproduction in female koalas, Phascolarctos cinereus: evidence for energetic compensation.
    Krockenberger A
    J Comp Physiol B; 2003 Aug; 173(6):531-40. PubMed ID: 12827418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian basal metabolic rates: their association with body composition and energy expenditure in nature.
    Daan S; Masman D; Groenewold A
    Am J Physiol; 1990 Aug; 259(2 Pt 2):R333-40. PubMed ID: 2386245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic adjustments to increasing foraging costs of starlings in a closed economy.
    Wiersma P; Salomons HM; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4099-108. PubMed ID: 16244169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily energy expenditure and cell-mediated immunity in pied flycatchers while feeding nestlings: interaction with moult.
    Moreno J; Sanz J; Merino S; Arriero E
    Oecologia; 2001 Dec; 129(4):492-497. PubMed ID: 24577688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mystery of Energy Compensation.
    Halsey LG
    Physiol Biochem Zool; 2021; 94(6):380-393. PubMed ID: 34529542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy requirements of pregnancy in rural Thailand.
    Thongprasert K; Tanphaichitre V; Valyasevi A; Kittigool J; Durnin JV
    Lancet; 1987 Oct; 2(8566):1010-2. PubMed ID: 2889914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood metabolite levels in normal and handicapped pied flycatchers rearing broods of different sizes.
    Kern MD; Bacon W; Long D; Cowie RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):70-6. PubMed ID: 17267253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes.
    Gavrilov VM
    Q Rev Biol; 2014 Jun; 89(2):107-50. PubMed ID: 24984324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.
    Portugal SJ; Green JA; Halsey LG; Arnold W; Careau V; Dann P; Frappell PB; Grémillet D; Handrich Y; Martin GR; Ruf T; Guillemette MM; Butler PJ
    Physiol Biochem Zool; 2016; 89(3):251-61. PubMed ID: 27153134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.