BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31278333)

  • 1. The Bivalent Rewarding and Aversive properties of Δ
    Norris C; Szkudlarek HJ; Pereira B; Rushlow W; Laviolette SR
    Sci Rep; 2019 Jul; 9(1):9760. PubMed ID: 31278333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-directional cannabinoid signalling in the basolateral amygdala controls rewarding and aversive emotional processing via functional regulation of the nucleus accumbens.
    Ahmad T; Sun N; Lyons D; Laviolette SR
    Addict Biol; 2017 Sep; 22(5):1218-1231. PubMed ID: 27230434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anxiety and cognitive-related effects of Δ
    Hudson R; Norris C; Szkudlarek HJ; Khan D; Schmid S; Rushlow WJ; Laviolette SR
    Psychopharmacology (Berl); 2022 Feb; 239(2):509-524. PubMed ID: 34860284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.
    Ahmad T; Laviolette SR
    Psychopharmacology (Berl); 2017 Aug; 234(15):2325-2336. PubMed ID: 28669034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta-9-tetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states.
    Fitoussi A; Zunder J; Tan H; Laviolette SR
    Eur J Neurosci; 2018 Jun; 47(11):1385-1400. PubMed ID: 29776015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens.
    Sun N; Laviolette SR;
    Neuropsychopharmacology; 2014 Nov; 39(12):2799-815. PubMed ID: 24896614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highway to hell or magic smoke? The dose-dependence of Δ
    Kubilius RA; Kaplick PM; Wotjak CT
    Learn Mem; 2018 Sep; 25(9):446-454. PubMed ID: 30115766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cannabidiol Counteracts the Psychotropic Side-Effects of Δ-9-Tetrahydrocannabinol in the Ventral Hippocampus through Bidirectional Control of ERK1-2 Phosphorylation.
    Hudson R; Renard J; Norris C; Rushlow WJ; Laviolette SR
    J Neurosci; 2019 Oct; 39(44):8762-8777. PubMed ID: 31570536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adolescent exposure to chronic delta-9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats.
    Morel LJ; Giros B; Daugé V
    Neuropsychopharmacology; 2009 Oct; 34(11):2469-76. PubMed ID: 19553915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward.
    Lepore M; Vorel SR; Lowinson J; Gardner EL
    Life Sci; 1995; 56(23-24):2073-80. PubMed ID: 7776834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.
    Ahmad T; Lauzon NM; de Jaeger X; Laviolette SR
    J Neurosci; 2013 Sep; 33(39):15642-51. PubMed ID: 24068830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of mu-, delta- and kappa-opioid receptor subtypes in the discriminative-stimulus effects of delta-9-tetrahydrocannabinol (THC) in rats.
    Solinas M; Goldberg SR
    Psychopharmacology (Berl); 2005 Jun; 179(4):804-12. PubMed ID: 15619107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats.
    Hempel BJ; Wakeford AG; Clasen MM; Friar MA; Riley AL
    Pharmacol Biochem Behav; 2016 May; 144():1-6. PubMed ID: 26905371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors.
    Ghozland S; Matthes HW; Simonin F; Filliol D; Kieffer BL; Maldonado R
    J Neurosci; 2002 Feb; 22(3):1146-54. PubMed ID: 11826143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.
    Ellgren M; Spano SM; Hurd YL
    Neuropsychopharmacology; 2007 Mar; 32(3):607-15. PubMed ID: 16823391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of footshock stress on place conditioning produced by Δ
    DeVuono MV; Wills KL; MacPherson DV; Hrelja KM; Parker LA
    Psychopharmacology (Berl); 2017 Nov; 234(21):3229-3240. PubMed ID: 28803323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Δ
    Moore CF; Davis CM; Sempio C; Klawitter J; Christians U; Weerts EM
    Cannabis Cannabinoid Res; 2024 Feb; 9(1):111-120. PubMed ID: 36179013
    [No Abstract]   [Full Text] [Related]  

  • 18. Cannabinoid Transmission in the Hippocampus Activates Nucleus Accumbens Neurons and Modulates Reward and Aversion-Related Emotional Salience.
    Loureiro M; Kramar C; Renard J; Rosen LG; Laviolette SR
    Biol Psychiatry; 2016 Aug; 80(3):216-25. PubMed ID: 26681496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
    Lintas A; Chi N; Lauzon NM; Bishop SF; Sun N; Tan H; Laviolette SR
    Eur J Neurosci; 2012 Jan; 35(2):279-90. PubMed ID: 22236063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission.
    Valjent E; Pagès C; Rogard M; Besson MJ; Maldonado R; Caboche J
    Eur J Neurosci; 2001 Jul; 14(2):342-52. PubMed ID: 11553284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.