BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31278439)

  • 1. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish.
    Roberts BH; Morrongiello JR; King AJ; Morgan DL; Saunders TM; Woodhead J; Crook DA
    Oecologia; 2019 Oct; 191(2):253-260. PubMed ID: 31278439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monsoonal wet season influences the migration tendency of a catadromous fish (barramundi Lates calcarifer).
    Roberts BH; Morrongiello JR; Morgan DL; King AJ; Saunders TM; Banks SC; Crook DA
    J Anim Ecol; 2024 Jan; 93(1):83-94. PubMed ID: 37984847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies).
    Bloom DD; Lovejoy NR
    Proc Biol Sci; 2014 Mar; 281(1778):20132081. PubMed ID: 24430843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low interbasin connectivity in a facultatively diadromous fish: evidence from genetics and otolith chemistry.
    Hughes JM; Schmidt DJ; Macdonald JI; Huey JA; Crook DA
    Mol Ecol; 2014 Mar; 23(5):1000-13. PubMed ID: 24410817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of diadromy in fish: insights from a tropical genus (Kuhlia species).
    Feutry P; Castelin M; Ovenden JR; Dettaï A; Robinet T; Cruaud C; Keith P
    Am Nat; 2013 Jan; 181(1):52-63. PubMed ID: 23234845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in the migratory history of the tropical catadromous eels Anguilla bicolor bicolor and A. bicolor pacifica in south-east Asian waters.
    Arai T; Chino N
    J Fish Biol; 2019 May; 94(5):752-758. PubMed ID: 30847927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives).
    Egan JP; Simons AM; Alavi-Yeganeh MS; Hammer MP; Tongnunui P; Arcila D; Betancur-R R; Bloom DD
    Syst Biol; 2024 May; ():. PubMed ID: 38756097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics.
    Smith WE; Kwak TJ
    J Fish Biol; 2014 Apr; 84(4):913-28. PubMed ID: 24673161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in organochlorine accumulation accompanying life history in the catadromous eel Anguilla japonica and the marine eel Conger myriaster.
    Arai T; Takeda A
    Ecotoxicology; 2012 May; 21(4):1260-71. PubMed ID: 22407403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse migration strategy between freshwater and seawater habitats in the freshwater eel genus Anguilla.
    Arai T; Chino N
    J Fish Biol; 2012 Jul; 81(2):442-55. PubMed ID: 22803719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of otolith chemistry to characterize diadromous migrations.
    Walther BD; Limburg KE
    J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movements of diadromous fish in large unregulated tropical rivers inferred from geochemical tracers.
    Walther BD; Dempster T; Letnic M; McCulloch MT
    PLoS One; 2011 Apr; 6(4):e18351. PubMed ID: 21494693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated river discharge enhances the immigration of juvenile catadromous and amphidromous fishes into temperate coastal rivers.
    Amtstaetter F; Yen JDL; Hale R; Koster W; O'Connor J; Stuart I; Tonkin Z
    J Fish Biol; 2021 Jul; 99(1):61-72. PubMed ID: 33580711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facultative amphidromy involving estuaries in an annual amphidromous fish from a subtropical marginal range.
    Murase I; Iguchi K
    J Fish Biol; 2019 Dec; 95(6):1391-1398. PubMed ID: 31587274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus cotidianus) - implications for incipient speciation in island freshwater fish species.
    Michel C; Hicks BJ; Stölting KN; Clarke AC; Stevens MI; Tana R; Meyer A; van den Heuvel MR
    BMC Evol Biol; 2008 Feb; 8():49. PubMed ID: 18275608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juvenile river herring habitat use and marine emigration trends: comparing populations.
    Turner SM; Limburg KE
    Oecologia; 2016 Jan; 180(1):77-89. PubMed ID: 26369780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial migration of grey mullet (Mugil cephalus) on Australia's east coast revealed by otolith chemistry.
    Fowler AM; Smith SM; Booth DJ; Stewart J
    Mar Environ Res; 2016 Aug; 119():238-44. PubMed ID: 27344396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies).
    DeHaan LM; Burns MD; Egan JP; Bloom DD
    Am Nat; 2023 Dec; 202(6):830-850. PubMed ID: 38033182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma.
    Bond MH; Beckman BR; Rohrbach L; Quinn TP
    J Fish Biol; 2014 Nov; 85(5):1429-45. PubMed ID: 25131145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.