BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31278447)

  • 1. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour.
    South J; Botha TL; Wolmarans NJ; Wepener V; Weyl OLF
    Ecotoxicology; 2019 Sep; 28(7):771-780. PubMed ID: 31278447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator-prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): importance of lateral line in nocturnal predation and effects of fenitrothion exposure.
    Junges CM; Lajmanovich RC; Peltzer PM; Attademo AM; Bassó A
    Chemosphere; 2010 Nov; 81(10):1233-8. PubMed ID: 20937517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.
    Dinh Van K; Janssens L; Debecker S; Stoks R
    Aquat Toxicol; 2014 Jul; 152():215-21. PubMed ID: 24792152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors.
    Grunseich JM; Aguirre NM; Thompson MN; Ali JG; Helms AM
    J Chem Ecol; 2021 Nov; 47(10-11):822-833. PubMed ID: 34415500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prey consumption and prey preference of the larvae of the mosquito Culex (Lutzia) raptor on the larvae of Culex quinquefasciatus.
    Thangam TS; Kathiresan K
    Experientia; 1996 Apr; 52(4):380-2. PubMed ID: 8620943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae.
    Brodin T; Mikolajewski DJ; Johansson F
    Oecologia; 2006 May; 148(1):162-9. PubMed ID: 16421756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water depth-dependent notonectid predatory impacts across larval mosquito ontogeny.
    Dalal A; Cuthbert RN; Dick JT; Gupta S
    Pest Manag Sci; 2019 Oct; 75(10):2610-2617. PubMed ID: 30729643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling the nonlinear effects of habitat complexity on functional responses.
    Mocq J; Soukup PR; Näslund J; Boukal DS
    J Anim Ecol; 2021 Jun; 90(6):1525-1537. PubMed ID: 33713437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation.
    Delnat V; Tran TT; Janssens L; Stoks R
    Aquat Toxicol; 2019 Nov; 216():105310. PubMed ID: 31580997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos.
    Langer-Jaesrich M; Kienle C; Köhler HR; Gerhardt A
    Ecotoxicology; 2010 Oct; 19(7):1294-301. PubMed ID: 20628814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles.
    Hettyey A; Tóth Z; Thonhauser KE; Frommen JG; Penn DJ; Van Buskirk J
    Oecologia; 2015 Nov; 179(3):699-710. PubMed ID: 26163350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species.
    Roux O; Diabaté A; Simard F
    J Anim Ecol; 2014 May; 83(3):702-11. PubMed ID: 24138173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels.
    Manzur T; Vidal F; Pantoja JF; Fernández M; Navarrete SA
    J Anim Ecol; 2014 Jul; 83(4):923-33. PubMed ID: 24428576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predator density modifies mosquito regulation in increasingly complex environments.
    Buxton M; Cuthbert RN; Dalu T; Nyamukondiwa C; Wasserman RJ
    Pest Manag Sci; 2020 Jun; 76(6):2079-2086. PubMed ID: 31943746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis.
    Prater CM; Harris BN; Carr JA
    Horm Behav; 2020 Apr; 120():104707. PubMed ID: 32001211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unidirectional prey-predator facilitation: apparent prey enhance predators' foraging success on cryptic prey.
    Zhang Y; Richardson JS
    Biol Lett; 2007 Jun; 3(3):348-51. PubMed ID: 17426008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes.
    Buxton M; Nyamukondiwa C; Dalu T; Cuthbert RN; Wasserman RJ
    Parasit Vectors; 2020 Dec; 13(1):604. PubMed ID: 33261665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of halofenozide against prey mosquito larvae Culex pipiens and the predator fish Gambusia affinis: impact on growth and enzymatic activities.
    Soltani N; Chouahda S; Smagghe G
    Commun Agric Appl Biol Sci; 2008; 73(3):659-66. PubMed ID: 19226809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the pyrethroid fenvalerate on the alarm response and on the vulnerability of the mosquito larva Culex pipiens molestus to the predator Notonecta glauca.
    Reynaldi S; Meiser M; Liess M
    Aquat Toxicol; 2011 Jul; 104(1-2):56-60. PubMed ID: 21543050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.