BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31279045)

  • 1. Validation of bioinformatic approaches for predicting allergen cross reactivity.
    Herman RA; Song P
    Food Chem Toxicol; 2019 Oct; 132():110656. PubMed ID: 31279045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database.
    Hileman RE; Silvanovich A; Goodman RE; Rice EA; Holleschak G; Astwood JD; Hefle SL
    Int Arch Allergy Immunol; 2002 Aug; 128(4):280-91. PubMed ID: 12218366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The value of short amino acid sequence matches for prediction of protein allergenicity.
    Silvanovich A; Nemeth MA; Song P; Herman R; Tagliani L; Bannon GA
    Toxicol Sci; 2006 Mar; 90(1):252-8. PubMed ID: 16338955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further evaluation of the utility of "sliding window" FASTA in predicting cross-reactivity with allergenic proteins.
    Cressman RF; Ladics G
    Regul Toxicol Pharmacol; 2009 Aug; 54(3 Suppl):S20-5. PubMed ID: 19114081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of E-scores to determine the quality of protein alignments.
    Silvanovich A; Bannon G; McClain S
    Regul Toxicol Pharmacol; 2009 Aug; 54(3 Suppl):S26-31. PubMed ID: 19245824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops.
    Song P; Herman RA; Kumpatla S
    Food Chem Toxicol; 2014 Sep; 71():142-8. PubMed ID: 24953553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics and the allergy assessment of agricultural biotechnology products: industry practices and recommendations.
    Ladics GS; Cressman RF; Herouet-Guicheney C; Herman RA; Privalle L; Song P; Ward JM; McClain S
    Regul Toxicol Pharmacol; 2011 Jun; 60(1):46-53. PubMed ID: 21320564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allergen false-detection using official bioinformatic algorithms.
    Herman RA; Song P
    GM Crops Food; 2020 Apr; 11(2):93-96. PubMed ID: 31906791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical and predictive bioinformatics methods for the identification of potentially cross-reactive protein matches.
    Goodman RE
    Mol Nutr Food Res; 2006 Jul; 50(7):655-60. PubMed ID: 16810734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Percent amino-acid identity thresholds are not necessarily conservative for predicting allergenic cross-reactivity.
    Herman RA; Song P; Kumpatla S
    Food Chem Toxicol; 2015 Jul; 81():141-142. PubMed ID: 25929743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of multiple criteria for the in silico prediction of cross-reactivity of proteins to known allergens.
    Mirsky HP; Cressman RF; Ladics GS
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):232-9. PubMed ID: 23933007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk.
    Herman RA; Hou Z; Mirsky H; Nelson ME; Mathesius CA; Roper JM
    Transgenic Res; 2021 Apr; 30(2):201-206. PubMed ID: 33761048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of conventional FASTA identity searches with the 80 amino acid sliding window FASTA search for the elucidation of potential identities to known allergens.
    Ladics GS; Bannon GA; Silvanovich A; Cressman RF
    Mol Nutr Food Res; 2007 Aug; 51(8):985-98. PubMed ID: 17639511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AllerTool: a web server for predicting allergenicity and allergic cross-reactivity in proteins.
    Zhang ZH; Koh JL; Zhang GL; Choo KH; Tammi MT; Tong JC
    Bioinformatics; 2007 Feb; 23(4):504-6. PubMed ID: 17150996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis.
    Jenkins JA; Griffiths-Jones S; Shewry PR; Breiteneder H; Mills EN
    J Allergy Clin Immunol; 2005 Jan; 115(1):163-70. PubMed ID: 15637564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of putative and potential cross-reactive chickpea (Cicer arietinum) allergens through an in silico approach.
    Kulkarni A; Ananthanarayan L; Raman K
    Comput Biol Chem; 2013 Dec; 47():149-55. PubMed ID: 24099701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-React: a new structural bioinformatics method for predicting allergen cross-reactivity.
    Negi SS; Braun W
    Bioinformatics; 2017 Apr; 33(7):1014-1020. PubMed ID: 28062447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence-based regulations for bioinformatic prediction of allergen cross-reactivity are needed.
    Herman RA; Song P; Mirsky HP; Roper JM
    Regul Toxicol Pharmacol; 2021 Mar; 120():104841. PubMed ID: 33333099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allergen cross-reactivity in allergic rhinitis and oral-allergy syndrome: a bioinformatic protein sequence analysis.
    Platt M; Howell S; Sachdeva R; Dumont C
    Int Forum Allergy Rhinol; 2014 Jul; 4(7):559-64. PubMed ID: 24799331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of cross-reactivity between the Bacillus thuringiensis derived protein Cry1F in maize grain and dust mite Der p7 protein with human sera positive for Der p7-IgE.
    Ladics GS; Bardina L; Cressman RF; Mattsson JL; Sampson HA
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):136-43. PubMed ID: 16406630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.