These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31279056)

  • 21. A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part II: molecular mobility and activation thermodynamic parameters.
    Shmeis RA; Wang Z; Krill SL
    Pharm Res; 2004 Nov; 21(11):2031-9. PubMed ID: 15587925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the Solubility Advantage of Amorphous Pharmaceuticals: A Novel Thermodynamic Approach.
    Paus R; Ji Y; Vahle L; Sadowski G
    Mol Pharm; 2015 Aug; 12(8):2823-33. PubMed ID: 26107071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amorphous and Crystalline Particulates: Challenges and Perspectives in Drug Delivery.
    Al-Obaidi H; Majumder M; Bari F
    Curr Pharm Des; 2017; 23(3):350-361. PubMed ID: 27829335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuances in the Calculation of Amorphous Solubility Enhancement Ratio.
    Manchanda A; Kleppe MS; Bogner RH
    J Pharm Sci; 2019 Nov; 108(11):3560-3574. PubMed ID: 31271772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical Stability of Amorphous Solid Dispersions: a Physicochemical Perspective with Thermodynamic, Kinetic and Environmental Aspects.
    Lin X; Hu Y; Liu L; Su L; Li N; Yu J; Tang B; Yang Z
    Pharm Res; 2018 Apr; 35(6):125. PubMed ID: 29687226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility.
    Marsac PJ; Shamblin SL; Taylor LS
    Pharm Res; 2006 Oct; 23(10):2417-26. PubMed ID: 16933098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling Recrystallization Kinetics Following the Dissolution of Amorphous Drugs.
    Skrdla PJ; Floyd PD; Dell'Orco PC
    Mol Pharm; 2020 Jan; 17(1):219-228. PubMed ID: 31809062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solubility advantage of amorphous pharmaceuticals, part 3: Is maximum solubility advantage experimentally attainable and sustainable?
    Murdande SB; Pikal MJ; Shanker RM; Bogner RH
    J Pharm Sci; 2011 Oct; 100(10):4349-56. PubMed ID: 21630280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-Term Amorphous Drug Stability Predictions Using Easily Calculated, Predicted, and Measured Parameters.
    Nurzyńska K; Booth J; Roberts CJ; McCabe J; Dryden I; Fischer PM
    Mol Pharm; 2015 Sep; 12(9):3389-98. PubMed ID: 26236939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.
    Löbmann K; Grohganz H; Laitinen R; Strachan C; Rades T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):873-81. PubMed ID: 23537574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks.
    Saal C; Petereit AC
    Eur J Pharm Sci; 2012 Oct; 47(3):589-95. PubMed ID: 22885099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug.
    Lakshman JP; Cao Y; Kowalski J; Serajuddin AT
    Mol Pharm; 2008; 5(6):994-1002. PubMed ID: 19434852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions.
    Lehmkemper K; Kyeremateng SO; Heinzerling O; Degenhardt M; Sadowski G
    Mol Pharm; 2017 Dec; 14(12):4374-4386. PubMed ID: 29050468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic and kinetic evaluation of the impact of polymer excipients on storage stability of amorphous itraconazole.
    Zhang S; Lee TWY; Chow AHL
    Int J Pharm; 2019 Jan; 555():394-403. PubMed ID: 30513399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of the amorphous "solubility" of a group of diverse drugs using new experimental and theoretical approaches.
    Almeida e Sousa L; Reutzel-Edens SM; Stephenson GA; Taylor LS
    Mol Pharm; 2015 Feb; 12(2):484-95. PubMed ID: 25495614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallization Risk Assessment of Amorphous Solid Dispersions by Physical Shelf-Life Modeling: A Practical Approach.
    Liu B; Theil F; Lehmkemper K; Gessner D; Li Y; van Lishaut H
    Mol Pharm; 2021 Jun; 18(6):2428-2437. PubMed ID: 34032433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of copolymer composition on the phase behavior of solid dispersions.
    Prudic A; Kleetz T; Korf M; Ji Y; Sadowski G
    Mol Pharm; 2014 Nov; 11(11):4189-98. PubMed ID: 25295846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.
    Schver GCRM; Lee PI
    Mol Pharm; 2018 May; 15(5):2017-2026. PubMed ID: 29601723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium.
    Baghel S; Cathcart H; O'Reilly NJ
    Eur J Pharm Biopharm; 2016 Oct; 107():16-31. PubMed ID: 27378287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.