BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31279191)

  • 1. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids.
    Le TT; Yoon H; Son MH; Kang YG; Chang YS
    Sci Total Environ; 2019 Nov; 689():444-450. PubMed ID: 31279191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transformation of hexabromocyclododecane using zerovalent iron nanoparticle aggregates.
    Tso CP; Shih YH
    J Hazard Mater; 2014 Jul; 277():76-83. PubMed ID: 24962054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of hexabromocyclododecane by carboxymethyl cellulose stabilized Fe and Ni/Fe bimetallic nanoparticles: The particle stability and reactivity in water.
    Tso CP; Kuo DTF; Shih YH
    Chemosphere; 2020 Jul; 250():126155. PubMed ID: 32105853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol.
    Ukisu Y
    Chemosphere; 2017 Jul; 179():179-184. PubMed ID: 28365503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity.
    Le TT; Son MH; Nam IH; Yoon H; Kang YG; Chang YS
    J Hazard Mater; 2017 Mar; 325():82-89. PubMed ID: 27915102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic degradation and the effect of hexabromocyclododecane by soil microbial communities in Taiwan.
    Li YJ; Li MH; Shih YH
    Environ Int; 2020 Dec; 145():106128. PubMed ID: 33011547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient hexabromocyclododecane-biodegrading microorganisms isolated in Taiwan.
    Chou TH; Li YJ; Ko CF; Wu TY; Shih YH
    Chemosphere; 2021 May; 271():129544. PubMed ID: 33445030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism.
    Xie Y; Fang Z; Cheng W; Tsang PE; Zhao D
    Sci Total Environ; 2014 Jul; 485-486():363-370. PubMed ID: 24742544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-dibromopropyl) isocyanurate (TBC) in farm soils at a peri-urban region.
    Wang T; Han S; Ruan T; Wang Y; Feng J; Jiang G
    Chemosphere; 2013 Jan; 90(2):182-7. PubMed ID: 22818088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil.
    Zhang K; Huang J; Wang H; Liu K; Yu G; Deng S; Wang B
    Chemosphere; 2014 Dec; 116():40-5. PubMed ID: 24613442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants.
    Li Y; Zhou Q; Wang Y; Xie X
    Chemosphere; 2011 Jan; 82(2):204-9. PubMed ID: 21051070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal-spatial distribution and diastereoisomer pattern of hexabromocyclododecane in the vicinity of a chemical plant.
    Wang X; Sun R; Chen Y; Zhang X; Cui Z
    J Environ Sci (China); 2019 Aug; 82():203-212. PubMed ID: 31133265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexabromocyclododecane and tetrabromobisphenol A in sediments and paddy soils from Liaohe River Basin, China: Levels, distribution and mass inventory.
    Li F; Jin J; Tan D; Wang L; Geng N; Cao R; Gao Y; Chen J
    J Environ Sci (China); 2016 Oct; 48():209-217. PubMed ID: 27745666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China.
    Li H; Zhang Q; Wang P; Li Y; Lv J; Chen W; Geng D; Wang Y; Wang T; Jiang G
    J Environ Monit; 2012 Oct; 14(10):2591-7. PubMed ID: 22898824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O 2 under simulated sunlight.
    Zhou D; Wu Y; Feng X; Chen Y; Wang Z; Tao T; Wei D
    Environ Sci Pollut Res Int; 2014 May; 21(9):6228-33. PubMed ID: 24488521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of zerovalent iron on the microbial degradation of hexabromocyclododecane.
    Peng YH; Chen YJ; Chang M; Shih YH
    Chemosphere; 2018 Jun; 200():419-426. PubMed ID: 29501032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexabromocyclododecane: concentrations and isomer profiles from sources to environmental sinks.
    Okonski K; Melymuk L; Kohoutek J; Klánová J
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36624-36635. PubMed ID: 30377961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure.
    Lu JF; He MJ; Yang ZH; Wei SQ
    Environ Pollut; 2018 Nov; 242(Pt A):219-228. PubMed ID: 29980040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of hexabromocyclododecane (HBCD) by nanoscale zero-valent aluminum (nZVAl).
    Jiang Y; Yang S; Liu J; Ren T; Zhang Y; Sun X
    Chemosphere; 2020 Apr; 244():125536. PubMed ID: 31816547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst.
    Zhuang Y; Jin L; Luthy RG
    Chemosphere; 2012 Oct; 89(4):426-32. PubMed ID: 22732301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.