These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31279201)

  • 21. Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant: Effects of typical sludge properties.
    Yang P; Li D; Zhang W; Wang N; Yang Z; Wang D; Ma T
    Chemosphere; 2019 Mar; 218():930-940. PubMed ID: 30609498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on ultrasonic treatment for municipal sludge.
    Xu X; Cao D; Wang Z; Liu J; Gao J; Sanchuan M; Wang Z
    Ultrason Sonochem; 2019 Oct; 57():29-37. PubMed ID: 31208616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal hydraulic shear strength and mechanism of activated sludge floc re-growth after breakage.
    Guo X; Zhang C; Liu J
    Colloids Surf B Biointerfaces; 2019 Apr; 176():202-211. PubMed ID: 30623807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization and evaluation of dewatering properties of chitosan-grafting DMDAAC flocculants.
    Wang D; Zhao T; Yan L; Mi Z; Gu Q; Zhang Y
    Int J Biol Macromol; 2016 Nov; 92():761-768. PubMed ID: 27471087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automation in sludge dewatering by novel on-line characterisation of flocculation.
    Sievers M; Schroeder C; Bormann H; Onyeche TI; Schlaefer O; Schaefer S
    Water Sci Technol; 2003; 47(2):157-64. PubMed ID: 12636075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Sludge Conditioning Performance of Polyaluminum, Polyferric, and Titanium Xerogel Coagulants].
    Wang XM; Wang X; Yang MH; Zhang SJ
    Huan Jing Ke Xue; 2018 May; 39(5):2274-2282. PubMed ID: 29965528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances.
    Wilén BM; Jin B; Lant P
    Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound-initiated synthesis of cationic polyacrylamide for oily wastewater treatment: Enhanced interaction between the flocculant and contaminants.
    Zhao C; Zheng H; Gao B; Liu Y; Zhai J; Zhang S; Xu B
    Ultrason Sonochem; 2018 Apr; 42():31-41. PubMed ID: 29429674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of fine structure of chitosan-based flocculants on the flocculation of bentonite and humic acid: Evaluation and modeling.
    Wang M; Feng L; You X; Zheng H
    Chemosphere; 2021 Feb; 264(Pt 2):128525. PubMed ID: 33038737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties.
    Wang JP; Yuan SJ; Wang Y; Yu HQ
    Water Res; 2013 May; 47(8):2643-8. PubMed ID: 23531592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced dewatering of sludge with the composite of bioflocculant MBFGA1 and P(AM-DMC) as a conditioner.
    Guo J; Nengzi L; Zhao J; Zhang Y
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):2989-98. PubMed ID: 25634018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel acrylamide-free flocculant and its application for sludge dewatering.
    Lu L; Pan Z; Hao N; Peng W
    Water Res; 2014 Jun; 57():304-12. PubMed ID: 24731856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant.
    Lin Q; Peng H; Zhong S; Xiang J
    J Hazard Mater; 2015 Mar; 285():199-206. PubMed ID: 25497034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment.
    Guo J; Ma J
    Bioresour Technol; 2015 Nov; 196():736-40. PubMed ID: 26259686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying rheological analysis to better understand the mechanism of acid conditioning on activated sludge dewatering.
    Wang HF; Ma YJ; Wang HJ; Hu H; Yang HY; Zeng RJ
    Water Res; 2017 Oct; 122():398-406. PubMed ID: 28622632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.
    Chen Z; Zhang W; Wang D; Ma T; Bai R
    Water Res; 2015 Oct; 83():367-76. PubMed ID: 26196306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase.
    Saveyn H; Pauwels G; Timmerman R; Van der Meeren P
    Water Res; 2005 Aug; 39(13):3012-20. PubMed ID: 15993464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unified understanding of physico-chemical properties of activated sludge and fouling propensity.
    Jørgensen MK; Nierychlo M; Nielsen AH; Larsen P; Christensen ML; Nielsen PH
    Water Res; 2017 Sep; 120():117-132. PubMed ID: 28478289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aggregate characterisation by using the FlocFormer system to improve sludge dewatering.
    Stoll MS; Sievers M; Schroeder C; Niedermeiser M
    Water Sci Technol; 2009; 59(10):2009-15. PubMed ID: 19474496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process.
    Wang HF; Hu H; Wang HJ; Zeng RJ
    Sci Total Environ; 2018 Dec; 643():1065-1073. PubMed ID: 30189523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.