These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31279230)

  • 41. i-GONAD: A method for generating genome-edited animals without ex vivo handling of embryos.
    Ohtsuka M; Sato M
    Dev Growth Differ; 2019 Jun; 61(5):306-315. PubMed ID: 31198998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery of novel disease-causing mutation in
    Cha JH; Lee SH; Yun Y; Choi WH; Koo H; Jung SH; Chae HB; Lee DH; Lee SJ; Jo DH; Kim JH; Song JJ; Chae JH; Lee JH; Park J; Kang JY; Bae S; Lee SY
    Mol Ther Nucleic Acids; 2024 Sep; 35(3):102257. PubMed ID: 39104869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling human point mutation diseases in
    Shi Z; Xin H; Tian D; Lian J; Wang J; Liu G; Ran R; Shi S; Zhang Z; Shi Y; Deng Y; Hou C; Chen Y
    FASEB J; 2019 Jun; 33(6):6962-6968. PubMed ID: 30844313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos.
    Liu Z; Cheng TT; Shi Z; Liu Z; Lei Y; Wang C; Shi W; Chen X; Qi X; Cai D; Feng B; Deng Y; Chen Y; Zhao H
    Cell Biosci; 2016; 6():22. PubMed ID: 27042291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of canonical A-to-G editing events at 3' UTRs and microRNA target sites in human lungs using next-generation sequencing.
    Soundararajan R; Stearns TM; Griswold AL; Mehta A; Czachor A; Fukumoto J; Lockey RF; King BL; Kolliputi N
    Oncotarget; 2015 Nov; 6(34):35726-36. PubMed ID: 26486088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Progress on base editing systems].
    Zong Y; Gao CX
    Yi Chuan; 2019 Sep; 41(9):777-800. PubMed ID: 31549678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Precision genome engineering through adenine base editing in plants.
    Kang BC; Yun JY; Kim ST; Shin Y; Ryu J; Choi M; Woo JW; Kim JS
    Nat Plants; 2018 Jul; 4(7):427-431. PubMed ID: 29867128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adenine Base Editing
    Zhang H; Bamidele N; Liu P; Ojelabi O; Gao XD; Rodriguez T; Cheng H; Kelly K; Watts JK; Xie J; Gao G; Wolfe SA; Xue W; Sontheimer EJ
    GEN Biotechnol; 2022 Jun; 1(3):285-299. PubMed ID: 35811581
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Base editing corrects the common Salla disease
    Harb JF; Christensen CL; Kan SH; Rha AK; Andrade-Heckman P; Pollard L; Steet R; Huang JY; Wang RY
    Mol Ther Nucleic Acids; 2023 Dec; 34():102022. PubMed ID: 37727271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy.
    Ryu SM; Koo T; Kim K; Lim K; Baek G; Kim ST; Kim HS; Kim DE; Lee H; Chung E; Kim JS
    Nat Biotechnol; 2018 Jul; 36(6):536-539. PubMed ID: 29702637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly efficient A-to-G base editing by ABE8.17 in rabbits.
    Zhao D; Qian Y; Li J; Li Z; Lai L
    Mol Ther Nucleic Acids; 2022 Mar; 27():1156-1163. PubMed ID: 35282412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD.
    Xue N; Liu X; Zhang D; Wu Y; Zhong Y; Wang J; Fan W; Jiang H; Zhu B; Ge X; Gonzalez RVL; Chen L; Zhang S; She P; Zhong Z; Sun J; Chen X; Wang L; Gu Z; Zhu P; Liu M; Li D; Zhong TP; Zhang X
    Nat Commun; 2023 Mar; 14(1):1224. PubMed ID: 36869044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correction of β-thalassemia mutant by base editor in human embryos.
    Liang P; Ding C; Sun H; Xie X; Xu Y; Zhang X; Sun Y; Xiong Y; Ma W; Liu Y; Wang Y; Fang J; Liu D; Songyang Z; Zhou C; Huang J
    Protein Cell; 2017 Nov; 8(11):811-822. PubMed ID: 28942539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. sgRNA-shRNA Structure Mediated SNP Site Editing on Porcine
    Sun Y; Yan N; Mu L; Sun B; Deng J; Fang Y; Shao S; Yan Q; Han F; Zhang Z; Xu K
    Front Genet; 2019; 10():347. PubMed ID: 31057603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat.
    Kamiya Y; Abe F; Mikami M; Endo M; Kawaura K
    Plant Biotechnol (Tokyo); 2020 Jun; 37(2):247-251. PubMed ID: 32821233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome.
    Guo J; Chen X; Liu Z; Sun H; Zhou Y; Dai Y; Ma Y; He L; Qian X; Wang J; Zhang J; Zhu Y; Zhang J; Shen B; Zhou F
    Mol Ther Nucleic Acids; 2022 Mar; 27():73-80. PubMed ID: 34938607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a Simple and Quick Method to Assess Base Editing in Human Cells.
    Lv X; Qiu K; Tu T; He X; Peng Y; Ye J; Fu J; Deng R; Wang Y; Wu J; Liu C; Zhao J; Gu F
    Mol Ther Nucleic Acids; 2020 Jun; 20():580-588. PubMed ID: 32335475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID.
    Sasaguri H; Nagata K; Sekiguchi M; Fujioka R; Matsuba Y; Hashimoto S; Sato K; Kurup D; Yokota T; Saido TC
    Nat Commun; 2018 Jul; 9(1):2892. PubMed ID: 30042426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.