These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31279314)

  • 1. Temperature-dependent redox zonation, nitrate removal and attenuation of organic micropollutants during bank filtration.
    Munz M; Oswald SE; Schäfferling R; Lensing HJ
    Water Res; 2019 Oct; 162():225-235. PubMed ID: 31279314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal dynamics modifies fate of oxygen, nitrate, and organic micropollutants during bank filtration - temperature-dependent reactive transport modeling of field data.
    Barkow IS; Oswald SE; Lensing HJ; Munz M
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9682-9700. PubMed ID: 33151490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of hydraulic travel time for the evaluation of organic compounds removal in bank filtration.
    Handl S; Kutlucinar KG; Allabashi R; Troyer C; Mayr E; Langergraber G; Hann S; Perfler R
    Chemosphere; 2023 Mar; 317():137852. PubMed ID: 36669539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study.
    Bertelkamp C; Verliefde AR; Schoutteten K; Vanhaecke L; Vanden Bussche J; Singhal N; van der Hoek JP
    Sci Total Environ; 2016 Feb; 544():309-18. PubMed ID: 26657377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.
    Maeng SK; Ameda E; Sharma SK; Grützmacher G; Amy GL
    Water Res; 2010 Jul; 44(14):4003-14. PubMed ID: 20542313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany).
    Henzler AF; Greskowiak J; Massmann G
    J Contam Hydrol; 2014 Jan; 156():78-92. PubMed ID: 24270159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.
    Bertelkamp C; van der Hoek JP; Schoutteten K; Hulpiau L; Vanhaecke L; Vanden Bussche J; Cabo AJ; Callewaert C; Boon N; Löwenberg J; Singhal N; Verliefde AR
    Chemosphere; 2016 Feb; 144():932-9. PubMed ID: 26432535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption and biodegradation of organic micropollutants during river bank filtration: a laboratory column study.
    Bertelkamp C; Reungoat J; Cornelissen ER; Singhal N; Reynisson J; Cabo AJ; van der Hoek JP; Verliefde AR
    Water Res; 2014 Apr; 52():231-41. PubMed ID: 24275110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fate of organic micropollutants during long-term/long-distance river bank filtration.
    Hamann E; Stuyfzand PJ; Greskowiak J; Timmer H; Massmann G
    Sci Total Environ; 2016 Mar; 545-546():629-40. PubMed ID: 26766391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration.
    van Driezum IH; Derx J; Oudega TJ; Zessner M; Naus FL; Saracevic E; Kirschner AKT; Sommer R; Farnleitner AH; Blaschke AP
    Sci Total Environ; 2019 Feb; 649():212-223. PubMed ID: 30173030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone.
    Burke V; Greskowiak J; Asmuß T; Bremermann R; Taute T; Massmann G
    Sci Total Environ; 2014 Jun; 482-483():53-61. PubMed ID: 24642095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of polar trace organic compounds in the hyporheic zone.
    Schaper JL; Seher W; Nützmann G; Putschew A; Jekel M; Lewandowski J
    Water Res; 2018 Sep; 140():158-166. PubMed ID: 29705619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of seasonality, redox conditions, travel distances and initial concentrations on micropollutant removal during riverbank filtration at four sites.
    Oberleitner D; Schulz W; Bergmann A; Achten C
    Chemosphere; 2020 Jul; 250():126255. PubMed ID: 32092574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. River water infiltration enhances denitrification efficiency in riparian groundwater.
    Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH
    Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic matter and modeling redox reactions during river bank filtration in an alluvial aquifer of the Lot River, France.
    Kedziorek MA; Geoffriau S; Bourg AC
    Environ Sci Technol; 2008 Apr; 42(8):2793-8. PubMed ID: 18497125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOM degradation during river infiltration: effects of the climate variables temperature and discharge.
    Diem S; Rudolf von Rohr M; Hering JG; Kohler HP; Schirmer M; von Gunten U
    Water Res; 2013 Nov; 47(17):6585-95. PubMed ID: 24064550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of boundary conditions on the cleaning efficiency of riverbank filtration and artificial groundwater recharge systems regarding bulk parameters and trace pollutants.
    Storck FR; Schmidt CK; Wülser R; Brauch HJ
    Water Sci Technol; 2012; 66(1):138-44. PubMed ID: 22678210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive multi-linear regression model for organic micropollutants, based on a laboratory-scale column study simulating the river bank filtration process.
    Bertelkamp C; Verliefde AR; Reynisson J; Singhal N; Cabo AJ; de Jonge M; van der Hoek JP
    J Hazard Mater; 2016 Mar; 304():502-11. PubMed ID: 26619049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system.
    van Driezum IH; Chik AHS; Jakwerth S; Lindner G; Farnleitner AH; Sommer R; Blaschke AP; Kirschner AKT
    Sci Total Environ; 2018 Jun; 627():450-461. PubMed ID: 29426167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based analysis of the reactive transport behaviour of 37 trace organic compounds during field-scale bank filtration.
    Sanz-Prat A; Greskowiak J; Burke V; Rivera Villarreyes CA; Krause J; Monninkhoff B; Sperlich A; Schimmelpfennig S; Duennbier U; Massmann G
    Water Res; 2020 Apr; 173():115523. PubMed ID: 32044593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.