These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31279314)
61. Assessment of dynamics and variability of organic substances in river bank filtration for prioritisation in analytical workflows. Handl S; Kutlucinar KG; Allabashi R; Troyer C; Mayr E; Perfler R; Hann S Environ Sci Pollut Res Int; 2024 Aug; 31(40):53410-53423. PubMed ID: 39192150 [TBL] [Abstract][Full Text] [Related]
62. Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Heberer T; Massmann G; Fanck B; Taute T; Dünnbier U Chemosphere; 2008 Sep; 73(4):451-60. PubMed ID: 18752833 [TBL] [Abstract][Full Text] [Related]
63. Assessing the efficacy of river bank filtration around a check dam in a non-perennial river for rural water supply in southern India. Rajendiran A; S P Environ Monit Assess; 2023 Jun; 195(7):883. PubMed ID: 37354338 [TBL] [Abstract][Full Text] [Related]
64. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume. Hamonts K; Kuhn T; Vos J; Maesen M; Kalka H; Smidt H; Springael D; Meckenstock RU; Dejonghe W Water Res; 2012 Apr; 46(6):1873-88. PubMed ID: 22280951 [TBL] [Abstract][Full Text] [Related]
65. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality. Muellegger C; Weilhartner A; Battin TJ; Hofmann T Sci Total Environ; 2013 Jan; 443():14-23. PubMed ID: 23178886 [TBL] [Abstract][Full Text] [Related]
66. Behavior of organophosphates and hydrophilic ethers during bank filtration and their potential application as organic tracers. A field study from the Oderbruch, Germany. Stepien DK; Regnery J; Merz C; Püttmann W Sci Total Environ; 2013 Aug; 458-460():150-9. PubMed ID: 23644568 [TBL] [Abstract][Full Text] [Related]
67. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material. Barbieri M; Carrera J; Sanchez-Vila X; Ayora C; Cama J; Köck-Schulmeyer M; López de Alda M; Barceló D; Tobella Brunet J; Hernández García M J Contam Hydrol; 2011 Nov; 126(3-4):330-45. PubMed ID: 22115096 [TBL] [Abstract][Full Text] [Related]
68. Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream. Jaeger A; Posselt M; Betterle A; Schaper J; Mechelke J; Coll C; Lewandowski J Environ Sci Technol; 2019 Mar; 53(5):2383-2395. PubMed ID: 30754970 [TBL] [Abstract][Full Text] [Related]
69. Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration. Kondor AC; Jakab G; Vancsik A; Filep T; Szeberényi J; Szabó L; Maász G; Ferincz Á; Dobosy P; Szalai Z Environ Pollut; 2020 Oct; 265(Pt A):114893. PubMed ID: 32544664 [TBL] [Abstract][Full Text] [Related]
70. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Jørgensen CJ; Jacobsen OS; Elberling B; Aamand J Environ Sci Technol; 2009 Jul; 43(13):4851-7. PubMed ID: 19673275 [TBL] [Abstract][Full Text] [Related]
71. Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China. Cao Y; Tang C; Song X; Liu C; Zhang Y J Environ Monit; 2012 Oct; 14(10):2624-33. PubMed ID: 22898796 [TBL] [Abstract][Full Text] [Related]
72. Modeling the effects of temperature on the migration and transformation of nitrate during riverbank filtration using HYDRUS-2D. Pan W; Huang Q; Huang G; Xing L Sci Total Environ; 2021 Aug; 783():146656. PubMed ID: 33865130 [TBL] [Abstract][Full Text] [Related]
73. The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater - a laboratory study. Burke V; Duennbier U; Massmann G Water Sci Technol; 2013; 67(3):658-66. PubMed ID: 23202573 [TBL] [Abstract][Full Text] [Related]
74. Biodegradation of trace sulfonamide antibiotics accelerated by substrates across oxic to anoxic conditions during column infiltration experiments. Ma Y; Ma M; Palomo A; Sun Y; Modrzynski JJ; Aamand J; Zheng Y Water Res; 2023 Aug; 242():120193. PubMed ID: 37327547 [TBL] [Abstract][Full Text] [Related]
75. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate. Kegel FS; Rietman BM; Verliefde AR Water Sci Technol; 2010; 61(10):2603-10. PubMed ID: 20453334 [TBL] [Abstract][Full Text] [Related]
76. Nitrate denitrification rate response to temperature gradient change during river bank infiltration. Song Y; Su X; Che Q; Dong W; Wan Y; Lyu H; Song T Environ Geochem Health; 2024 Apr; 46(5):151. PubMed ID: 38578445 [TBL] [Abstract][Full Text] [Related]
77. Nitrate in groundwater of the United States, 1991-2003. Burow KR; Nolan BT; Rupert MG; Dubrovsky NM Environ Sci Technol; 2010 Jul; 44(13):4988-97. PubMed ID: 20540531 [TBL] [Abstract][Full Text] [Related]
78. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment. Xu Y; Chen N; Feng C; Hao C; Peng T Environ Technol; 2016 Dec; 37(24):3094-103. PubMed ID: 27132648 [TBL] [Abstract][Full Text] [Related]
79. Evaluation of Meiofauna in the Hyporheic Zone of the Beberibe River, Pernambuco, Brazil. Veras TB; Cabral JJSP; Paiva ALR; Santos PJP; Freitas DA Water Environ Res; 2018 Aug; 90(8):685-696. PubMed ID: 28915932 [TBL] [Abstract][Full Text] [Related]
80. Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Edet A; Worden RH Environ Monit Assess; 2009 Oct; 157(1-4):243-58. PubMed ID: 18821024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]